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1. FOOD SERVICE MANAGEMENT (Uro05)

l.fﬁ\Thq Problems of Food Service Management

{
The food service management for an institution !

such/ as a hospitalmust concern itself with the problems
Such a’
1) that sufficient
quantltles of food items be on hard to prepare the menu

of serving a large number of meals every day.
service demands, at the very least:

items, 2) that certaln nutrlent requirements be met, and
3) that reasonable costs he maintained.
course, other aspects &f food service,

There are, of
but for the
purposes of this unit we wi%l concentrate on these three.

1.2 - Definitions

raw food, and a

We define food items as purchase
h made from food

menu item as single serving of a di

ample, cake is a menu item whose 1ngrgd1-"
of food items such'as eggs, flour butter
and sugar.| Nutrients are the properties of food such as .
calorié%,

rotein, fat, carbohydrates, galcium, vitamin
A,

/- ' ' -

1.3 Calculating Menu Costs

N
-k

. :

RIC.

. .
Let us suppose that we wished t% calculate the cost,

of a mgnu item, for. example, a pound cake.
calls .for. } unit,

The recipe

and butter. Thescost of these units are, respec-
70, 10, 25, and 50 cents. It is easy to see that
the cost of the ingredients in a pound cake i%:

T 70(1) ¢ 10(1) + 25(1). + 3p(1) =

sugar,
tively,

155 cents = $1.55.

Another récipq, one fé:fgkrambled eggs, requ1res
5 unit of eggs and T unit of butter. This cost, is cal-
culaved as: . : A

~70(%) + 50(%)‘3 47% cents.

given as a weight, each of eggs, flour,t

~

-




e .
The cost of each of-these menu Items 1s obtained by
. taking the sum of several products. The products in e
each case, are the costs of a unit of food item mu1t1p11ed 4

by the number of units of that 1£\m;yh1ch is needed in i
.
the recipe. This is very simple arithmetic. However, -
since we are deiling with a large;gumbgr of recipd§ with ,
a wide range of ingredients, there is some efficiency in - .
organizing our calculation in a structured. way. We will '3 )
proceed to demonstrate how this may be done.’ *
-
1.4 A Matrix Representaéﬁon of Menu ltems ’ .
The ingredients of each menu 1tem can be arranged
agFcolumns,. of a matrix in the following fashion: ,\\
= Menu |tem . ) —
. pound/ scrambled omelet beef strog.® . . . . 0 -
cak eggs : o_ .
eggs R .5 T - 0’ P .
flour 1 o 25 0 A .
£} sugdr 1 ,0 0 ) . o
3 - - [ / . * .
Zlbuttey ! .25 .25 0 ce .
Bl beef ‘ ' } -
@] stroganoff 0 o , ‘0 N 1
- .
. - . * ‘ 0 s- . - » )
' iy e T E- - (% . . PR . SN
e . ~p . A - Te .
e . LT
. . .
4. , *Beef strogan‘aff is a convenience food, and is . )
. purchased a}ready prepared For that fFeason it .
~ listed as both a food item and a menu item.
" ® + -
The eofu@ns of this 1ngred1ent matrix contain the N
quantlty of each food item neededzfor the menu item that ..,
is represented by each column. « The rows, of the matrix *
, represent the food items as they appear in various recipes.
.~ C \
A zero entry 1nd1cates that the food item is'not used in .t
.2 part1cu1ar reC1pe TPhe 115t of food items and menu- -
' 1tems is limited here for 51mp11c1ty A practical llst : i
would contain hundreds of items. - 3 ° ¢ o . . . A
v L N - } ~ . .
Al - Y A - e
s *, R v e
& - ’
. < ‘ . 3 ~ - 2 - ! v
-b
., . * .,
° * ~ ¢ « _ - I
B . AS

L ' : \)4-, : '
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1.5 The Price Vector . -

g . s s . o
. A-matrix consisting of a single row or golumn ig

called a xictor. We can arrange the prices of each of
the food i
row of numbers to define a price'vector:

. . . Ed
ems in the above matrix as such an ordered
2

N

. . o beef
, eggs . flour sugar butter strog.
. Price = [70 - 10 25" © 50 100 T

1.6 Calculating the Cost Vector

. If we-multiply the pf%q&y:fctor by the ingredient
“~
matrix, the result is a vectoY whose entries are the

.

costs for each recipe. That is, for the example values
. given: '

(70 10 25 50 100 51 7
1.0 .25
’ 1 0 0.0 -
' - 1 .25 .25 i] ~
0

' . T S 0., 0 1) = [155 47.5 85 100].
' 1

»
. . y o .
Not ite the order in which we write the left side of this
e
equation: row vector first, ingredient ﬁ%trix‘second.

®

9

Comgare the cohputation mad; previously for the first
. two of the menu items in this matrix with the computation
which is made in matrix ﬁhltiplication: We can see that
DAL the’computation§ are the same, and that ‘the resulting

vegtor does indeed contain, in order, the cost of each

- . -

.
s menu item. . .

Some Bf the adventages of structuring the problem
. this way -should be ev}dent. For_one, matrix multiplica-
' tidn‘accomplishéd the needed copputation:. In this form,
“\ dhe data gan be easily entered and the operations pér-
formed on a computer. Second, a simple change in pyice
can be entered once and will leays be "applied to al
_ recipes. Fimally, new récipes and ingredients can be
- added to an‘eipanded matrix with little trouble.

. -

B .7 3

. ’ ~

-
»-
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' , Note: Sometimes it>

this conven1ent to use matrix

+ multiplication just to sum a series of columns {or rows)
of a matrix. For example, suppose we wished to add each
column of this matrix: .

2.5 10.0 9.4 7.4] " !
. 17.3 7.6 3.6- 2.1
/- 87.0 3.2 1.9 8.3

Verify that the addition could be accomplished by
premultiplying the matrix by a row vector,_fl 1 1].
This is a convenient way to find the column sums when
We are using a computer to perform the calculations,

" Qution: If we wished to find the sum of.
' the rows of a matrix by means of
, ~matrix multiplications, how copld

we do 1t? . .

'\(

.o 1 ©
1. §uppose‘the number of servings of each recipe to be prepared on
) @ given day for pound cake, scrambled eggs, omefet, and beef

. . stroganoff isz respectively, 5,,105~2, and éba +Using matrix
multiplication,'calchfate the amount of each food needed on

, that day. The resultiﬁg vector is called the (input).#ood
‘package for the day P ' oy . . .

. 2. Find the cost of the food package usnng thebprbce vector given

-

. in Section t.5, : . ¢
¥ N . -~

. -

3. 'Supp6§e that numbér of recipes for several days is as fqllows:
.o T Dayl &« 10, 2, 50

Co L% 2 T T T :

Day’3: 1, 1, 10 0.

These recipes are the same as those in Problem 1. Formulate
these needs as a matrix. Find the total amount of each food
_needed for each of the three days (or find the input food

.o package for each day).

k. Find the cos

- f using the rlce vector given in Sectnon 1.5. . -

14 ‘ . 4
> .

g
& T )
-

1.7 . Exercises . ¢ . X
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1.8' Sample Menu 'l)ems and Costs Per Serving
r ‘ Cost in Cents
Sample Menu ‘'Items to Management
. -—per Serving
Dressing and Gravy . \
Brown Gravy \ . &.66 .
Onion 8ravy ' v, . 1 0.93
- Spanish Sauce ) < 3.75
Tartar Sau ' . o 1.98
Bar-B-Q séx o 1.25
‘Chicken Gravy " 0.53
¢ Cole .Slaw Vinegar Dressing 0.36
- Pimento Cheese ’ 4.38
Rpssian Dressing - . 2.41, s
French Dressing . 1,29
Thousand 1sland Dressing - ©1.45
Lemon Sauce . - R v 0.76°
Whipped Topplné r - 1.08
Pickle Salad Dressing oo bﬁﬂ‘ “
T Jimtrees . ’ ) ’ r’ . ’ " K
Beef Stew with Vege‘tables ‘ 22.95
Chili With Beans ¢ ' 18.46
) \.{eat Loaf and Gravy J , 22.90
* .Oven-Fried Steak: | . v 28.16-
Roast Beef with Gravy . 40.93
Countgy-Style Steak © 48.94
Smothered Steak \| y » 50.51
- Baked Swiss Steak . L 2N 54.52
Baked Macaroni and Cheese . . 10.00
Baked Haddock ) . s ) 30.77
Sole Fillet 'with Tartar Sauce - o . 32.00
Fish Sticks with Tartar Sauce . . _12.225
Sa‘lmon Pattie - 52.49
Béeadec; Pork Chop T "' " + 56.54 -
) eaded Pork Cutlet- o, ‘42,14
.- . Pork Chop with Mex1cap Sauce - o 48.30
v '.Deep-Fried Pork Cutlet - ) 4221
) Roast Fresh Ham with Gravy ' : 34._29
= e b s
N )
Q . . . . P

CEmmEm 0 v, ) S,
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Sample Menu Items

@

Bar-B-Q Chicken -7
Friéd Chicken

Roast Turkey with Gravy(
Chic¢ken-Fried Veal Cutlet
Oven-Fried Veal Cutlet

Baked Ham Loaf

Hot Corned Beef -

Smothered Liver with Onions
Polish Sausdge v
Sauteed Chidken Livers

Vegetables

Buttered Whole Kernel Corn
Seasoned Hominf

Baked Beans
Seasoned'BfZEkéyed Peas
Buttered Greén Lima Beans 3
Buttered’ Egg Noodles
Potatoes Au Gratin

Baked Potato

ﬁuttered Diced Potatoes
Creamed piced Potatoes
Hash Browned Potatoe's
French Fried Potatoes
Whipped Potatges’ .
Oven-Browned Potato
Paprika Diced Potatoes .
Buttered Steamed Rice

Rice Pilaf .

Glazed Sweet Potatoes
Buttered Steamed Cabbage ,
Harvard, Beets

Cauliflower Au Gratin
Buttered Broccoli *
Buttered Brussel5 Sprouts
Buttered Caul}flower ¢

- 1
» N
, l

ERIC -

Aruitoxt provided by Eic:

»

Cost in Cents
to Management

_per Serving
" 46.21

44.50
.38.21
44 .45

.42.21
32.93 .

+34.50
34.36
30.12
16.80 .

.31
.18
.90 .
.85
.34
.23
.97
.26
.16.
.47
.49
.12
.51
.68
.84
.41
.06
.67
.16
.61
.94
.55
.29
.30

!

.
[
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A T Cost in Cents »~
. Sample Menu Items to Management
. * . _ber Serving
e“Buttered Diced Carrots - T 4.58
) Parsley-ﬁdtterqd Carrots , 4.48
¢ Buttered Spinach 7 6.30
Buttered Chopped Turnip Grééns 4.7%
Buttered French-Cut Green Bé;ns . 8.68
Buttered Canned Green Beans ' 12.14
Buttered Mixed Vegetable$ . 8.50 .
Buttered- Green Peas _ . . " 10.26
; Buttered Wax Beans ) , 10.28
Stewed ‘Tomatoes ) 6.47
Buttered Onions . ' 6.82
+ -Seasoned Yellow Squash - , . 12.86 )
. Salads ~ -7
- Pineapple Waldorf Salad, _ . © 8.86
Strawberry Jello with Bananas . 4.43
. Cabbage Slaw/Green Peppers i - 4.90 -
Mardi Gras Cole Slaw 5.34
Carrot-Celery Sticks ) 3.24
Relishes (Crts, D11 Pkls, Rp Olives) 7.52
Stuffed Celery . ® . - 4.70 .
Deviled Egg Salad o : 7.87
Lettuce Weage/Russian Dressing ) 6.99
i Tossed Salad/French Dressing . : 685
Lettuce Wedge/Salad Dregsing 10.93 R
. Tossed Salad/1000 Isle Dressing * - 5.95
Marinated Vegetable §aLaé " " g.s1
Ambrosia Salad , 14.29
Jellied Grapefruit Salad 6.98 g
Peach-Cottage Cheese Salad ’ +10.88
. Jellied Pear Salad : ' 8.22
Pineapple-Cheddar Cheese Salad % ) 10.37
Sliced Tomato Salad . , - 10.95
Perfection Salad s ‘ 4,06
'- ) . L
. 7
. By
- . 11 ~
. . v
o : '

e o -
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Sample Menu“Items .
Y

Desserts

\

Apple Betty®
Canned Xbricots
Banana Layer Cake N
/ Gingerbread with Lemon Sauce
" White Layer Cake with Icing
White Bread “

Milk,
Cherry Pie . /ﬁ\
) Anéel Cake/Whipped Choc Topping °
: Gela{in €ubes " .

Lemon Sponge Custard
Canned Ffuit.Cocktail
Peach Pige ' ¢

Canned Pears

Vanilla+Ice Cream ’ . -
Rice Custard -

Pumpkin Pie . »r

e

ERIC B

Aruitoxt provided by Eic:

1

. B
Oost 1n ts

0 Management

per ‘Serving

10.
6
16.
10.
_ 10,
'8.
13.

83~

.22
75

67
57

.36°

00
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° 1.9 Model Exam . )
1. Use Computer Program 1 in Appendh_c A to calculat.e AB for |
Jiso w0 7.7] ' \ T
19 16.4 13.7 . . _
25.4 22,4 20.2 34,6 5.1 11 ]7:5 24,1 29.8 139
’ A=|32  29.4 26.7|'B= 32 2.5, 8.5 15 21.5 27 ‘36| -
. - 37:6 35 324 Lo 6 2= 18 24 30 36
w2.4 ko 37.2 -
L 1466wy 413 -
2.- Use the. following format., .
) : Meat Potato Vegetable' . Salad . DeSSert‘ )
) Menu 1 =
- Menu 2| . . - . .
. Menu 3. - ‘
Menu 4 ’ .
‘to write a matrix of costs, A, for the items s.hown in the following
. f;)ur menus. Costs per s&rving may be(taken from Section 1.8. ~
. Menu T o Menu 2
Baked Swiss Steak Baked Ham Loaf
Hash Birown Potatoes ? Glazed Sweet Potatoes .
Buttered Spinach . ) Stewed Tomatoes R
- Tossed Salad/French Dressing .Pi'neapple Waldorf 'Salad
Canned Fruit Cocktai‘l Gelatin Cubes
t Menu 3 ' Menu 4 e
Bar-B-Q Chicken © Hot Corned Beef -
! Whipped Potatces e _Oven-Browned Potato
) - Harvard Beets ' Buttered Steamed Cabbage
Lettuce Wedge/Russian Dressing Relishes - - ¢
. i Lemon Sponge Custard, Lherry Pi'e .

3. Solve this problem using the 4 menus shown above:
A chfeteria serves 50  Menu 1, 75 Menu 2, 37 Menu 3, and 46

Menu Gl' orders. " Usé matrix multiplication to find the total

cost for each type of menu.’ Y

L)
[} . - \

, N . ‘ .
. ERIC _ . )
: D b -
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2. APPLICATIONS OF MATRIX METHODS:

FOOD SERVICE AND DIETARY REQUIREMENTS (U109)

2.1 Chailenge Problem Y

-

.The mahager of food services for a large hospital
has the use of a computer to assist him in the management \_.
of his service. He'understands that a computer“is useful
in financial accounting, but the is hopeful that it can
be used to help him plan ahead and, perhaps, improvVe his
services. One of his problems is:.that hé must keep the
cost of food served at a reasohable price and, at the
same time, meet the nutritional requirements for.bélanced

or therabeutic diets. _Dietitians, of course, plan meali,
but the coordination of this activity .with the purchasing
and preparaiion of food is needed also. He feels that ?}
some of this work could be reduced by using a computer :
to give information which would help in making decisions. -

7

The computation of the nutrient content of a menu -~
item is simple arithmetic once the data has been assembled.
The sum of the products 6f the number of units of the
food items needed for the recipe of the menu dtem and the
nutrients, will, of course, give the total for each
nﬁtrient in the menu item. But, thereare bundreds of menu
items and food items; moreover, new recipes are constantly
being addedand old ones.discarded while the price of ,
food items change. There must be some orderly way of -
managing all this. ’ )

I

It has been suggested to the manager that he should
.s®t up files in matrix format to handle -all these data. Y
He is confused about this concept, and he calls you in
as an assistant agd mathematician to the project. Your
task is to help him formulate his problem mathematically,

and to set up the files a:afjkrices. &
. . ‘ R .
Question: What is meaft by setting ug/j&les in
matrix format?
10




Data in the files are arranged in rowsg ,
and columns so that matrix”operdtions

- s ' v
. S may be applied to them.

2.2 A Recipe Matrix. ' «*. - . '

.
o oc .

i . A recipe matr1x is one ‘of the f1rst f11es constructed
. In order to make th1s clear to the manager, you "consfrutt
: " a small matrix of menu items shéwing their ingredients.
With the help of someone such .as the fodd’prepargﬁion
. supervisor, you create the sample'recipe matrix, aS you
did 1n Section 1.4 of Unit"105., s

-

; ' Menu ftems

. ~ ay ap, an @
, Food Ingredients |a, a,, a,, az
‘ . . : %35 %3 ‘c'z” @3
hd .
2.3 Assignments (thionai)’ i‘ .

1.

resource person for actual rec1pes

Make a limited necibe matrix,

.

Consult a competent
if needed.

Qqest1ons: What does .eaclrcolumn of the matrix - §

represent7

‘R
matr1x.repre$ent7

What does edch row of the '~

What does each

element of the mgtrix repregsent?

)

Since you will be using this matrix in arithmetic
operations, it is ngcessary that the numbers be in stan-

dard units. In quantity food preparation, food is

measured by we1ght rather than spoonfuls, cups, etc.
The number of units in the recipe for each ﬁood should be

§u£f1c1ent to produce one serving for a normal diet.

- o . ' ® .
2. Create a nutrient matriz for each food in your recipe

. file. Suggestion: Let the entfries in column i represent
the nutrients %n food ingredient i. (See, Suggested Support
Materials, inside front cover,) Many books on nutr1t1on

contain extended tables of nutrient values, for example

. Nutrition, by Chaney and Ross, Houghton Mifflin, 1971,
T '., -
. ) ' M '.‘ ‘ -
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contains such a table. The standard nutrients to use are:

.
-

1. Food ehergy (calories)
‘¢ . Protein (grams) .
3. Fat (grams)
4. Carbohydrates (grams) ..
. 5. ~Ash (grams)
6. Calcium (milligrams) .
7. *Phosphorous (milligrams) .
8. Iron (milligrams)
9. Sodium (milligrams) .
10. Potassium (milligrams) .
o 11. Vitamin A (int&rnational units)
’ 12. Thiamin (milligréms),
13. . Riboflavin (milligrams)
14. Niacin (milligrams?

15. Ascorbic acid (milligrams)

Questions: What do the columns 6f the nutrient -
matrix represent? .

.7 What do the rows of the nutrient‘matrix
represent?/ .
‘Whax does each element of the nutrient

u matrix represent? °

’

3w Us1ng the recipe matrix and the nutrient matrix,
find the, nutrient content of each recipe.

Note that if, in censtructing the nutrient matrix,
you failed to make it conformable for matrix multipli-
cation, either pre- or post-, #1th the recipe matrix,

an adJustment will have to be made. &

4, Prepare a price vector (a atrix consisting of one
,YOWw or one column) for the foodz JAn your recipe matr1x.\
Make your pr1ces conform to "rea11ty" as much as poss1b1e,
keeping in mind that ?‘; hosplzal ay Thave a reduced price

for some items which are purchase in quant1ty.

. Find the cost of each’ recipe'using the reéipe® matrix
and the price vector. Which recipes are the most expensive?
- 12
’ N

-




/.. ' . -{ T - ’ - >
Referring.;o Assignment 3, compare the nutrient content
of the most expensive recipes witH that 'of the least

expensive. & - o ‘
- h .

4 5. (Prepare a serving matrix, that is;.a matrix con-~
> sisting, of the number of servings of each menu item per.
day for _some pgriod of¥time. One wezk would be q;sétis-
factory period. Keep in ‘mind that nog'every redipe need’
be.preparéd every day. Using this information, and the
previous matri&es which you constructed, how would you
. find a matrix showing the amount of each foadd needed per
day,? How would you find the cost per-day of-the food
required? Perform these calculations. -

.

2.4h Diets:Meeting Certain Requirements

. At this point, we turh our attention to a dif;;rent
type of problem. Suppose that a‘dqctor has ordered that
*"a patient's diet meet a minimum ddily requirement of 1
uhit of thiamin, 2'units of niacin, and 3 units of iron.
) 1§ we’ségect three menu Jitems (fgod ;tems could also be
used) which.contain these vitamins in the following

quan;itigs, ' Pl "‘
T » - Ml M2 M,,
. , « Thiamin 1 0 1 -
Niacin 0 2 ~3 .
Iron 4 0 1-

.
.

.what portion o recipe (or food) should be served’

to the patient to meet the minimum reduirements?
N ~

“~ . . .

!

s

., . Solution: s
Let =, = the pdrtion of the first item needed,
z, = the portion of the second item needed,
3 z, = the portioq\of the third item needed.
Then for thiamin = + z, > 1, ) LN
¢ for niacin 2z, +3z, > 2,
i “Tand iron 4z, +7x, > 3, .
. - 2 13
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These conditions in themdelves are not enough to .
\ guarantee that a triple aof values (xl, Xy, Xg) will :
give the proportions that the pat1ent needs. This is
¥ because the system of inequalities may have solutions in |
>\, which one or more of the variables takes on a negative

value. For example, the. %(3p1e of values X, = 2, X, = 3,
¢ Xg = 2 satisfies_ each of the inequalities. However, we
can e11m1nate the poss1b111ty of such solutions by -
requiring the variables to satisfy the additional three
inequalities X; 2 0, x2'> 0, X3 2 0. These 1nequallt1es.
merely formulate the obvious statement that menu portions

are never negative,
« . \ .
Now, we can certainly satisfy all six of our

inequalities with ‘huge values of. SERSY and x3 But to
'meet the patient's dietary requirements more econom1cally,
we look for non- negat1ve solutions of the equa11t1es

/-

) This suggests the following system of equat1ons:

, 0 : [} ,
x ot oz, = 1
- Iz, + 3z, =2

.

¢ . 4z + x‘3=3 .

r . - .
.

The matrix répresentation of this system 'is _

|1 <0 1 x

o
™~
w
2]
"
Cipt
4]

4 0 1 x,

\,A ll\. X = B >

~

Verify that this is true by multiplying A- and X, and 5,
. showing that the product equals B. The results should
be the three &riginal equations.

*®
To complete the solu(ioﬁ, let A”! be the inverse

ofymatrix A (if there is an inverse 'for A).s
. — 4 ~

*Ib is to be remembered that not all matrices have inverses. The

inverse exists if and only if |A| (determinant of A) has non zero

value. Also a matrix.B is called an inverse of” ‘A If BA= 1 = AB. M

Indeed, if the inverse exists then it is upique. For more details

see any standard book on linear algebra. "
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2.5 Research Project x

-

F1nd the recommended daily nutirtional requ1rements
for a nogmal person. You can use yourself as the person
in questi in oxder to specify characteristics such as
sex and weight. ' Construct a,recipe matrix of the menu
items that yoy eat for a given week. Does your dief meet
the recommended daily nutritipnal requirements most days?
"Does the average of the daily takq for a week meet
these regu1rements° :

o C ok,
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2.6 Model Exam v . .
. . )
¥
General Dlrections: |, .
- -
. In this test, do not perform any computatlons or assign <

' numerical values to the elements of the matrices you: construct.

. To indicate the structyre of a rnatrix, simply ‘label the contents’
of- the columns and &s as shown below. .

- ~ 4
. . T Name of Items , = . _ ~
~ . Represented by
S e the Columns
4, %y 9 EI
- 3 Name of |tems
{ P={|a a - AN
. a %z TaN Represented by ¢
- -f o e -+« «] the Rows

1. . In food preparation, a éubassembly is a part of a menu item
which may be prepared separately, for example, salad dressing,
frosting for a cake, or pie crust’ dough Sd’ up a matrix to

show the food contept of a set of subassemblies. .

2, Suppose you wished to compute the cost of each subassembly.
What sarnt of matrix would you need, and what kind of informa-

tion__sfipuld it contain? Show the matrix operatlon which
Represent the matrices as indicated

would compute this cost.
in the general directions. N

‘p="° [b"

Interpret the product BA.

1

-

e,
ST

ERIC . = '

.

b .

12

13

Unit cost of fudge items:
by

-

3. Show how you would compute the nutrient content of the sub-
assemblies. ’
, 'R Below are two nonsense matrices ;:alled A and B.
»
Gooies ° <
) an 2y, 4y, .
. A={a, a, a,| Fudge Items
. @y Qyp Ay .
’ - 4




5. In this section wé\;;;e been éo;cerned with the following
) activities: - ) -
a: Deciding on the kinds of information néeded to answer
S o certéinlqﬁestioni .
b.” Caollecting data
c¢. Displaying data in a matrix

c e «

- ' d. Deciding on, the matrix operations to be applied to ’
. . obtain information from data )
e. Making computations . N
Interpreting results . - P
’ A -

. . . \.
. Which of these activitits do you consider the fost difficult
/ . and wh{ch the\easiest? Give reasons for your answers. . —

(This question is evaluated on'the reasons you give for

‘ .

. your answer.) -

<
The' Project would like to thank Kenneth R. Rebman of . —

Califarnia State University, Hayward, and George Springer of -
Indiana University, Bloomington, for their reviews, and all
others who assisted in the production of this unit.

+ This unit was fielé:tested and/or studept reviewed by .
s’ , Ellen Cunninghan, SP, St. Mary-of-the-Woods College, ‘St. Mary-of
the-Woods, Indiana; Robert,M. Thrall, Rice University, Hotiston,
Texas; Philip D.,itraffin, Jr., Beloit College, Beloit, Wisconsin;
Michael A. Grajek, Hiram College, Hiram, Ohio; ‘Donaid G. Beane, -
The College of Wooster, Wooster, Ohio; Dina Ng,.California Polytech

Modesto Junior College, Modesto, California, and has been revised
on the basis of datq received from these sites.
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" 3. . ANSWERS TO' EXERCISES (U105) T
: - ' e N M
+, .Answer to question on page 4. . .
¢ N : > ’ - "
- <Postmultiply the matrix by a column vector consisting of 1's. e,
In the above case, use: |1
-, B ' 1 " 7- ,? o
. 1 R
L /
- - f . -
1. 1.5 1 0 5 12 eggs
1 .25 of |10 5.5 flour
1 0 (] (1 2|=} 5. sugar
¢ 1.25 .25 ¢ 50 .8 butter
0.0 0 1 . 50 beef stroganoff
. Note that it was neces;ary to pongmultipfy the ingredient
%t matrix by the number of recipes vector. This vector was formulated

as a column vector. Verify that the proper sums of products were

formed in order to give the total quantities of eggs, flour, etg. *

hd 2. [70 10 25 50 100} (12

T 15.5 -
5 | =6420." T
— - | 8
Lo . o | :
' 3. s 1 6] 5 271 [z 6.5 1.5
16 .25 o |10 3 1] [5.5 2.95 3‘.5_] ;
) 10 o0-olx|2 3 10 =| 5 2 1 §
- 1.25 2570 50 3 6| |8 "3.5 3.751 ,
. Joo o d ]_so 6 o]
, . .
b 170 10 25 50 1001 x[iz 6.5 11.57]
. 5.5 2.75 3.5 ‘
5 2 1 1= (6420 1307.5 1052.5]
‘ 18 3.5  3.75
’ . T 150 6 o.J : v
. ' LS ) ’ ) o 18 -
v ]
22 . ”
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L 4. ANSWERS TO MODEL EXAM (UlOS) DV RN
L - ‘ ‘. \._“ o1, C } i r~
- ). R . :.,—_?* T .
* 1. Input Matrices ’ . . S
e —~ , N
. 13.000 . 10.400  7.7d0 * . v, e
- . 19.900 ,16.400 13.700 : .
~ 25.400 22.400 20.200 .. T .
- 32.000 29.400 26.700 .~ . -
37.600 35.000 32.400 s A
k2.400 40.000  37.200 L
L k6.500 44,000 * 41.300 “ ¢ )
34.600 5 5.160 «wi\.100 17.500 "24.100..29.800 39.000 ° S
32.000 2.5.00 8.500 15.000 21.500 - 27.000% 36.000 '
‘- 0.000  6.000 12.000 18.000 24.000 30.000 36.000 *
Ma;rk Product I L . '
e ’
782.-599 138, .500 325.099 522.099 721.699 899.199 1158.600
. . . 1182.199 220. 039 514,839 825.099 1139.300 1420.000 * 1824.600 v
© 1595.639 306.739 714, 139 1144.099 3578.539 1967.719 2524.199 '
2048.000 396.899 925.499 1481.593 2044.099 2548.399 3267.600
. » 2420.959 473.659 1103.659 1766.199 "2436.259 3037.479 3892.799
2747.040 539.439 1257.039 2011.599 2774.639 3459.519 L432.799 -
3020.360° 595.453 1386.853 221‘8 899 3060.253 3816.679 4888.200 !
. 2. ¢ S\ Meat Potatoes ‘Vege ablesr salad Desser. . )
M1 54‘52 8.49 . 6.30 6.85 9.52 . . .
, M2 |32:93  8.67 6.47 .88 230 . ‘
M3 | 46.21 2.5 2.61 6.99 ka2 - .
- Mlo 3_10.50 8.6 5.16 ’ §.52 ' 13.03 : .
3= To find the cpst of one s,erving\oih an |nd|vndual menu, we need
to sum the costs of the component menu items: i.e. ., Wwe need to
e o fund the sup of a row of the matrix of® costsy A. This can be’ ;
R - done by post-multiplying A by the vector . ’
. 46 " ‘ ’ - ’ - 4 .
. N . N 1 .. ' ~ A - ‘ - .
N 1 . - 4‘.
S ~ 1 . T~ .
L] -
] ’ ‘ . ) . I - i\ - R
‘ -~ 'J‘ . . :
y ;. The result will be a veéctor whose cor;:ponents are the costs of '»:
the menus ¢ . - . b
) [cost (menu 1) cdst (menu 2) cost (menu 3) cost (menu 4)1
R o To £ind the total cost to the cafeteria, multnply thIS vector N ‘

° by the number-ofﬁ'servings vector

19




R

L6 .
'
Notice pre-multiplying matrix A by C gives a cost vector
whose elements wguli\\rEpresenf the total cost for all the

75 : ‘ :
¢*137 ~ﬁ// ©-
A 4

menus of: . ~
~ “ . NN R

[meat‘ pogyatoes vegetables -salad dessert]
- 4

but not tNe cost of the individual menus. We see that it is
Important to consider carefully what tpé entries in a product

matrix repr&Sent and the order of detiprcation.
'y

~
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P 5. ANSWERS TO MODEL EXAM (U109) - .
. 1-2. Let f, f,, Fys v v rep%antitles of food items, S
N and Sl , Sz‘, 53, . + . be sub=assemblies tontaining’ these items.
- letge, ¢, ¢,, - . . be unit costs of these food items. Then
. . \ \ q
’ T ' S Sy S, . Y. .. .
- e
. / le, ¢, . . .Ix hi K fo . L.
. ~ (Cost vector) H f £ A
: o - fa fo fo,  [=Cost of each
s /sub-assembly' .
o F , (Fo:j i tem matrixf : .
. ; - ’ & -~ .
, Some fij may be zero.
‘ s * o~ ‘ .
3. Be careful of t"is.problem. It is deliberately vagde. One ’
- interpretation would be to'computé the total nutrient tontent , A
' of several subassemblies. Then the problem may be set up .
¢
* ~a ‘as follows: r - -
- . 0 »
'\ N T .
. § ’ !
} - N '
P A L A E N Fa+ " - | Jotal of each
(quantity of each fy fxy ® X, .. .. .|= nutrient in
2 23
sub-assembly 7 2 2 2 set of sub-
. . prepared) 3 a 3 /oot assemblies
- } - - - - 5 - - .
. ' . . (Nutrient vectors showing
- N *unit quaiitities of each .
-2 ! . .for food items.) . .
L . ‘
/T. The product B x A = a cost vector for Gooies.
- * . * A
. +» 5, Individual answers are acceptab{le. However, for the type of
’ -, problem we are solving here activity a and activity g‘are
N - ‘probably the critical, ones. Activity f.ls important, but .
o * should not be difficult {f the others are performed properly, . ‘
Computations should not be considered difficult if a compuler .
4 is,used. ,Deciding on the matrix operations to be applied -
) should follow from the mag:ix structure. <G .
[ . . .
: ~ 21’
. . .
L3 + el
" 4 .
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. Cx%xx*READ THE

APPENDIX A o ’

. [ .
L
v
“ .

Cx*x%xx%APPL | CATIONS OF MATRIX METHODS - PROGRAM 1 \\
C**x%2TH|S PROGRAM PERFORMS MATRIX MULTIPLICATION ON ANY NUMBER OF PAIRS

« OF MATRICES . .
DIMENSION A(20,20),8(20,20), C(20,20), IHEAD(40) .
Cxx%x+4NR = LOGICAL NUMBER FOR THE CARD READER.
"NR = 2
C*xx#*NP = THE LOGICAL NUMBER FOR THE PRINTER. S )
. NP =S5 .
Cx#***READ TDENTIFICATION GRD. LAST CARD SHOULD CONTAIN /# IN COL. 1-2.
100  READ(NR,1,END=70) IHEAD . :
1 FORHAT(QOAZ)
WRITE(NP,3) IHEAD .

3 FORMAT (1H1,40A2//) oo
c READ THE .NUMBER 0{ ROWS AND COLUMNS IN THE FIRST MATRIX.
READ(NR,5) NROW, NCOL v
§ FORMAT(215), . z. ™~ -
CAA*%*READ THE FIRST MATRIX. | o <.
DO 10 | = 1,NROW . . . )
READ(NR,7) (A(1,4)3d=1, NCOL) . . v
7 FORMAT (\OF5.0) .

3

10 CONTINU

READ{NR}S) ,McoL .

DOZOI-I,MRON ' . - .
CA*x***READ THE SECOND MATRIX. ot . .
20 READ(NR,7) (B(1,3),J = 1,MCOL) - »

C#£x%%CALL THE SUBROUTINE TO HULTIPLY THE HATRICES
.CALL MATMY (A,NROW,NCOL ,B,MROW,HCOL c)
Cx*xxx*WRITE THE INPUT MATRICES. . ,,\ ’ . .
WRITE (NF,25) . ’ \
25 FORMAT(SX, ' INPUTIMATRICES'//)
DO 35 | = 1 ,NROW * -
“WRIYE (NP,30) (A(1,J),J = 1,NCOL) , . )
30 FORMAT(5X,10F10.3) .
35 - CONTINUE .
WRITE(NP,40) - - .
40 FORMAT(///)
DO 50 | = 1,MROW - .
50 WRITE(NP,30) (B(1,J),J = 1,MCOL) ¢ "
Ciexf#WRITE THE MATRIX PRODUCT. -
WRITE (NP,55)
55 FORMAT(///5X,*MATRIX PRODUCT'//) »
D0”60 1= 1 ,NROW .
60 ,\QIITE(NP,39‘) (c(1,dy,d=1,mnc0L)
Cr****RETURN FOR A NEW PROBLEM.
Go 1O 100 thd o
70 CALL. EXIT ,

. N




r

o

‘,,.-44 “

A

3

SUBROUTINE MATMY(A,NROW ,NCOL,B,MROW, MCOL ,€)
DIMENSION A(20,20) B(ZO 20), C(20 20)
NP.= §
IF(NCOL- MROU)ZO 10,20
20 °“WRITE(NP,15) .
15
™ 1ROWS IN SECOND MATRIX')
CALL EXIT
10 DO 40 t = 1,NROW
© D0 40 J = 1,MCOL -
c(144) = 0.0
DO 40 K = 1,NCOL
bo  t(@,d) = c(i,9) + A(1,K)*B(K,J)
, RETURN .
END - ’

'

23
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FORHAT(SX ' NUMBER OF COLUMNS IN FIRST HATRIX MUST EQUAL NUMBER OF

.
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e - ‘ HAINS (UNIT 107 .
. - ] ’ *
1.1 Introduction ‘
’ Jn order to understand what is meant by a Markov
chain, co?Srder the follow1ng situation. T
o
In 3\certain class, a teacher lras observed that .

students' performance on tests is affected by how well .
or poorly thegihave done on the last test taken. In
particular, 80% of the students who did well on the last

test will rate wgﬁl on the next one, 15% will be average,

and only 5% will be poor. For those who were rated as
average on a test, 60% will continue to be average on

the next test, while 10% will do well and 30% poorly.

For those students who were rated as poor,‘a ly 1% will

do well, 15% average, and the remaihing 84% S}}i\
to'rate low in the next test.

continue
We can’ think of this as a
Process which will continue through several tests. For N
the sake of discussion, we will ignore any factor which

mbght upset these predictions. .

L ]
o ‘ L .
1.2 Tree Diagrams
These ﬁrobabilities'can be represented by a tree e
diagram. Let the ratings be labeled as:’ .
a1\= good . ,
a, = -average ,
= \*\k
ag = poor — ¢

. }
where a1, a2, as represent the current %est score for
any student. If we start with a student who has received
¢ [y - el saq =4 s ’
a good grade, we can show the pbssibilities for the .o

next test yith a diagram,like the one below.

-

O .

a

.8 !

15 .

a, > 2 .
.05 -
. a ,
Figure 1.

In Figure 1, the lines drawn from a,, or branches
from a,, are labeled with thé probabilities that any
one of them will lead to the next event; that is,
a grade of good, average, or poor. Since these are the

only possibilities, one of them must happen if the student .
takes another test.

getting

For this reason, the sum of the
Probabilities stemming from any one point must equal 1.
Otherwise, some event could happen which is ngt accounted

« for.

Since we know the probabilities for the students
who receive average or poor grades, we can extend the
tree in Figure 1 to show this informationu.

<

Figure 2 shows the' probabilities through a series
of tests. The branches stemming from the left-most
a, point to the three outcome points for test 2. The
branches from each of these three points indicate the
probabilities for test 3.
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. . , .0 '
. -
.15 > aza
) 8k
as R

. Figure 2.

Representation of probabilities in the form
above is called a tree diagram.

~

~N
1.3 Calculating Probabilities"From a Tree Diagram

]

a good rét1ng on the third test*for a student who had
.receiged a good rating on the first test. If we examine
Figure 2, we see that, a, appears threé t1mes in the

right-most column, wh1ch 1nd1cates the.outcomes for the

third test. These three paths are along the branches:

a, + a, >+ a

w1 1 A
a -+ a

, 1 1 -

a, =+ a, > a !
. 1 3 1 *

- )

~

- q

[

Aécording to the rules of compound probability, .
the probability of one event following another is the

product of their-ppobabilitﬁes.*

Therefore,‘the

Suppose wa wished to Know the probability of getting '

< -
fbr the product rule to hold, the events in question must be 3
Indeppndent. ~e S

. ° - ' :341

.

~»

" to which we attach the meaging:

probability for each of these series of events is -

N
¥

o,
+

N
]

7 ] ] .8(.8) T .64 o
t, a; > ap = a, = .fS(.l) = ,015
-~ & .
‘ a; > az>a, = .05(.01) = .0005

Since one of these evenfs must occur if the test is
taken, and singe the events are mutually exclusive {cannot
occur together), the probability .of receiving a rating
of good on the third test is®the sum of the probabilities
of completing the*paths shown above.

.

. Thus, the possibility of reaching a, in twg moves
is .64 +7.015 + .0005 = L5555,
this proces> beginning at any state, we could compute
the probability for any subsequent state in a similagl

manner. - : )

1
If we were to explere R

-

1.4 The Matrix Representation of a Markov Chain .

The format of the computations made in Section 3 .
suggests that the information in the tree d1agram could
be structured as a matrix,

. .
a1 a2 a3
A ) (good) (average) (poor)
a, (good)/ .8 .15 .05
. M= a, (average), .1 .6 3

(poor) - .01 .15

the probabiljty of . .
going, in,one step from !

-

. a, to a; =pqq = .8 - :
‘ = =
3 p 47 10 337= pyp = .15
/’. a; to ag = p;, = .05.
’ J

-
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Exercise 1: .

Complete by giving the meaning-of and probability for

The process described in the preceding se;tion%‘ts -

an example of a Markov chain. Such a chain consists of

a series of states, and the,probabilities of passing, to

a new one in some defined process. As the example shows,

‘each state is always dependent on the one that precedes
it.

*9
1.5 Experiment 1

i
;E ;
.

of being in state a; or a, or a beginning. in any one of the three
states after the second test; bhe third test; the fodrth testy

- Hint: Do you see that multiplying the matr|x_M o
by itself according to the rules of hatrix
multlpllcatlon will give the desired proba-
bilisies for the second test?

Interpret M-M-M = M3,

~ s . »

.

What is the probability that the third test will be rated

o fﬁ”'_;;;:age if a studept was rated as poor in the first test?
N L/ a . - - '
) Extend th€ tree diagram in Figure 2 to show:the céntinuation

of the process through four steps. Calculate the probabilities 'of °

'being in state a, or &2 or a, after the fourth test, using the tree

L2
* diagram and the method shownlgn pages 3 = L,
results’pbtalned by caiculating M“

Compare this with the
Does the metrlx method produte
the same results? Do you see that USe of matrl;es in thls probleng

- pa - .

 '36_ ~ | -

Use the test example and ghe computer to compute the probability

» ] an B p21= * '
2y - .
. = byy= -
. T Pa3t
i = P3g1*™ - .
<
- - ' T -
. : T Pt
] ) = pPog= P '’ N
Y 33 7 . < 4
. i i - ad,
. R

v

a

makes thé‘;alculations simpler and mere likely to be accurateé when

using a computer than when working manually from a tree diagram?
. st . -

A}

: . 1.6 " Experiment 2 L : i

5 .

Assume’ that women's occupations could be classified as follows:

N
. [

- Housewife, full time =W,
. . Housewife, /part time work outside = wz
- . Full time-work outside home ., = w3 )
$ Full time professional career =W, e . ¢
) -~ ) A sample is taken of women who have at leastaone daughter i
: The:foIIOW|ng trends were noted 0f those daughters wh05e mothers
had been ful] time housewives, 50% were classnfled as NI, 25% as

2, “20% as W3, and 5% as W

4 For those whose mothers were housew*ves
> and Jbrkeq part time outsi

de the home, 60% of the daughters also
did so but IS% became full-time housewives and 15% worked full time,
. ‘with IOZ hav:ng a full professional career. The daughters the
) fuil- tmme workers were distributed as fallows: 20% full-tjz:‘
. housewives, 25% part-time workersy 40% full-time workers, and
N

>

L 4
15% professignal women. Finallye the daughters of professional

-~ women wefe distributed in this fashjon: 30% housewives, 20% part-

time workers,¢20% fulj-time_wquers, and'302 professional wdmen.

B -

PR Construgt a matrix to represent a Markov chain for these data.

Assuming that this trefid continues, find the probabilities

o that a woman will have the  same career as her grandmother.

)

QCalculate M2, M3, M*, M5, M® . .. up to any power you wish

. . & P
for this matrix. You are now able to make long term predictions
about this process. What seefis to be haPbening? .

1 -




"> 1.7 Model Exam (Unit 107)

h In the matrix representation of a Markov chain,*what do the
elements of the matrix represent?

2. The row sun of any Markov, matrix must be 1, Why?

§

3. The, following diagram represents a maze. Each compartment

can be considered a ''state' of the si,tgm. If a rat is
placed in compartment a,, what is the porbability that he . -~
will escape from the maze after a given number of trails?
(A trial consists_of a move from one compartment to another.)
Where there is only one way out of a compartment, the |
probabsllty of choosing that exit is, of course, 1. Clearly,
. if a comparthent cannot be reached directly from another
o compartment, the probability of passing between these two
is zero.- -

yo. equ

Hovement when there are multiple exits is considered
ly probable.

I

""'I lll B it f
-—-{ L % —_— % 5;: ;ys:zz)

’ a3 ‘ T

Rat fﬁze ) .

Draw a tree diagram to represemt thls system, and then set

. up a matrix of possibilities. Compute the probability a ,

. rat leaves the maze after three trials. .

v

~ - g e -

-
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2. APPLICATIONS OF MATRIX “ETHODS
FTXED POINT AND ABSORBING MARkOV CHAINS (UNIT 111)

2.1 Challenge Problem\n .

—
Comthition is a way of 1life for the producers of

many things, from TV shows to detergents._- One problem
They tend
to switch from one product to another. N )

stems from thé fickle nature of consumers.

For example, consider three TV networks which are

competing for viewers in a given time slot.
SUNNY DAYS, LOTSA GUNS, and MOON TURES are’

all broadcast on Tuesdays at 7:00 p.m. Surveys taken.
indicate that for those who watch SUNNY DAYS one week
there is a probability that 60% will continue to watch
it~ the next week, while 309 will probably switch to MOON
CREATURES, and 10% to LOTSA GUNS. For persons who watch
MOON CREATURES there is a 50% chance that they will
continue to do so the next week, with 40% chanjing to
LOTSA GUNS, and 10% going to SUNNY DAYS. Finally, tho;e
who watch LOTSA GUNS have a probab111ty of 70% of staying
with the show the following week,
of switching to MOON CREATURES.

shows,

and a 30% probab111ty

Let us formulate this information as a transition

matrix:. )

- ' SD MC LG

SD .6 3 11 .
, “Mew .1 5 .4 ~
LG 0 3 .7 AN

\Y¥ ~
SUNNY DAYS'started out with 70% of the audience,
MOON CREATURES had 10% .and, LOTSA GUNS' had-20%. In
spite of the good start, the cast of SUNNY DAYS were
worrying about their jobs at the end of $he fifth week,
and were, def1n1tély out of a job by the tenth week.
3 - 8

- ng)*\\“h__,

Three »
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i Could this have been predicted?

The answer is yes, if

it is assumed that the trend shown in. the survey continued.

;* In fatt sit is pQSSlble to predict tHat dventually SUNNY .

" ‘DAYS W111 have 9. 4% of the viewers, MOON CREATURES will

L have about 37.5%, and LOTSA GUNS will hol'd 53.1% of the ’
audience. When that point is reached,
fuithgr‘changes.

there will be po
The probabilities become fixzed.

. In Unit 107 we showed that we could predict the
sstate of & Markov chain as the process went through
: several stages' We did this my mu1t1p1y1ng the matrix

by itself, or raising 1t to a power. We did not explore

the possibility of the matrix reach1ng a ate&dy;atate,

. that is, that raising the matrix to higher and higher
. powers no_longer changed the probabilities. We consider
this situation new. . . ?

- ¢
.

2.2 Regular Transition Matgices

. A transition matrix:representing a Markov chain is

said to be regular if some Bower of the matrix has only
pos1t1ve components.

°

-.’

The transition matrix from the challenge prdblem is
an example of a regularxmatrrx thbugh the .original
matr1x has a zero element, if we ta the second power,
‘We f1nd that all of the elements are ppsitive.

Verify
th1s by constructing the matrix and uging Program 7 in
. Append1x A to find some power of it.
. &
. 2.3 Fixed-Probability Vectors . ' *

-

A row vector that consists gf non-negative elements
A0 whose sum is 1 is called a—probab111ty vector.
def1n1t1on each ﬁﬁngle row of "a transition matrix is”a
T x probab111€y vector.

From this
If a transitios matrix is regular,
B then after a number of steps, sometimes a large number,‘
the probability vectors (rows) tend to become the samé

- and remain fixed. To illustrate th1§, we use the

o a0 . o

Ie

o

"state.

challenge problem. When the transition matrix for TV

shows is raised to the 20th power, it becomes

.0937 0.3749 0.53171 _
T ]0.0937  0.3749  0.5312 .
0.0937  0.3749  0.5312],

When this happéns the process is in a "steady"
The probabilities will not change in future
The row vector which gives these probabilities,

[0.0937

steps.

0.3749  0.5312]

is called the fixed-probability vector. O

2.4 Calcylating a Fixed“Probability Vector

We can, of course, search for a fixed-probﬁbility
vector by raising a regular transition matrix to a poweré
confinuing until the fixed state is reached. With a
computer this is not particularly difficult, although it
may converge slowly and the result be only approximate.
There 1s, however, a direct way of obta1n1ng the fixed-
probability vector.

Ifsp is-a fixed-probability vector for 'a matrix A, .
then it can‘be shown that pA = p. If we'use this theorenm,
we can set up a system of equations which can be solved
for the vector p

N

2.5 Experiment 1

Verify that multiplying the transition matrix for the challenge‘
problem in Seg;ion 2.1 by the vector ohtained in 2.3 gives the same
¥

vector as the product. Thus ™ ~
0.6 0.3 0. .
[0.0937 0.3749 0.5312] [0.1 “0.5 o.4{~ = 0.937 0.3749 0.5312™™
. T 0.0 0.3 0.7
Use Program 1., i
. . ~

10
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2.6 A Fixed Probability Vector from a System of Linear 2.8 Experiment 3
’ Equations ' LT
. o . Four companies are competing against each other with prroducts .
. Since, for the fixed-probability vector p and the in toothpaste. A survey shows that the shift’from one brand to
. Tegular matrix A, pA = p, then, if- ‘ the ot;\er Gan be présented by this transition matrix.

. A 0 1 B.rand A B " ¢ D ‘
; : 6 4 AT . N .I‘I .

N

and ’ - . . . B

.7 1 1
p = [3:1 a:2] , . c P7 g, ‘
’ D 2 %0 6 : . 4
. 0 1 .
' [a:l 32] = [3:1 3:2] N " What is the long .term prediction for each company\§ share ‘
) 6 -4 of the market? . ¢ ‘
. -
" If we carry out the indicated multiplication, we * . what change would occur, if any, if company D changed its
obtain ) " product and a new survey showed the transition matrix to be: , ‘
. - - . o . -
[.6:2 a:1+.4a:2:' = E:I a:zj . A B C D, . |
»
or ~ A 2 1 2 \
.6:2 = =z ) . B 6 .2 1 ) .
. ¢ a7 a (
-z, + 4z, =z . . .
, 1 ¢ e o L2 o $1 e
and because the sum of ,any row Probability.vector must ’ R
. equal 1, . v 2.9 Absorbing Ma,rkov'Chains °
‘ s, 9 .
: ' Tyt ey 1 ‘ Some Markov chains contain states from which, once
‘.' ) . ) entered, departure is no longer possible. This state, .
2.7 Experiment 2 from which there is no return is called an absorbing
Use Program 6 in Appendix A to solve the three equations in state. We might have considered the rat maze problem -
two unknowns which were déavelohd in Section 2.6 We restate them as in*Unit 107 as having such a state if we.assumed that
~ w, + .6:2 =0 once the rat left the maze it could not go back in. ,
’ z, - bz =0 P d We can recognize "an absorb‘ing state from a transition ,
. “ 1 2 -t matrix. Any state, a, for which the element as; is
. Tt 2y o=l equal to 1 and all other elements of that row are zero
y InterpPet the result. - . ) is an aBsorbing state. As an example, recall the_ rat
4

. maze problem on page 7. The transition matrix is
Show that the same result could be found by raising matrix A . ¢

to a sufficiently high power. Use Program 7 . 11 . . - 43 12

A}
e -
L4z

-~ ’k/

et 4

.2
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It should be immediately evident that ag is an
absorbing state. The probab11;ty of going from ag
to a7, @y, @z or a, is zero in each case. We note
that ags equals 1 and §11 the other elements in that.

row are €7(°°

For a Markov chain to be an absorbing chain it
must be poss1b1e to get from ,any non- absorbing state
to an absorbing state. One way to recognize this from
the matr1x representat1on of a Markov chain is to
examine the columns which contain the 1 for the absorbing
‘States.  For each such column the rema1n1ng elements
must not be all zeros if there is to be a transition
to this absorbing state.

~

For exgmple, the following
Markov chain contains one absorbing state but is not
an absorbing chain.

3 e

\

@ o _
The state ag is an absorbing state, but there'is no way o

to reach it from any other statex Since it is the only
absorbt:g state in this chain the: chain in not an absorbing

chain. \We could ver1fy this by drawing the tree diagram
for this chain. , ’ '

e

2,10 Exercise for Absorbing Markov Chains" v o

“State whether the following tran5|t10n matrices are for
absorbing or fop nonabsorbing Markov chains. Why?-

L]
5u

2.11 A~Second Challenge Problem

» The Ace Collection Agency decides to add a serV1ce
for its department store customers, and, perhaps, improve
its own business. The pres1dent of Ace has observed
that some department stores turn over their bad accounts
for collection at varying times, while ,other Gompanies
rarely use the agency. The latter cempanies simply
wr1te.off unpaid bills after repeated attempts at
collect1ng on their own. The pre51dent of Ace proposes
that, for 4 reasonable fee, his agency will analyze .

the paylng habits of customers who have charge accounts




. Months

® -

with departmént stores. This analysis will produce, it *

is claimed, information that will enable ‘a store to
décide on a policy for turning over bad accounts to .a
collection agency At the same time, the analysis w111
give the store a way of calculatlng how‘long, on the
average, it takes for accounts to be either paid up or
classified as bad. ‘ . Co

L
1N

The manager’ of Homer ‘Department Store, after seeing
this analysis service advertised, decides to try it,

but he insdsts that the'method applied to determining °

any policieg for the store be made clear to him.before
they are effective. He asks that a representative from
Ace give an explanation of how it will be determined that
a debt will probably end up as bad, or how lo:Z\eebts

are likely to stay in var1ous stages of being overdue.

.The representat1ve agrees to give an explanation.
He beg1ns with ypotheticdl case. Suppose, he says,
that after studying our accounts it was found from past
history that your customers ' paying hab1ts could have
probab111t1es attached to them. These probab111t1es of -
changing status from month to month are shown in Table 1I.

\ . TABLE | i y
Proﬁgaﬁ¥?ties of Future Debts of a Typical Clstomer
\ .

- * .

Future®Months in‘Arrears
0 1 2 3 L 5 Paid-up Bad

o | .60 | .15 [ 00] 001 0.6.F 0.0 .25 | 0.0
1§ .20 | .35} .25 | 0.0-f 0.0 | 0.0 | .20 | 0.0
o 2| a0 | .20 w0 | .7 0.0 | 0.0 | .13 0.0
errears 3 .05 .10 | ..20 .18 .37 0.0 .10 0.0
S
5

Present

.02 .03 .07 -30 .28 215 -15 0.0
.01 .04 .04 0.0 .25 4571 .06 .15
Paid-up 0.0 0.0 0.0 0.0 0.0 0.0 1.0 | 0.0

Bad 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

— .

.

.In this table,. the status of adcounts is given in
months overdue. If there are only current charges, this
appears in the 0 column. The entries in the table are .
the probabilities of changing status from one month to .
the next. For example, a customer who is two months
1n arrears (the row labeled 2) has \ probab11§ty of

10 of having paid su1f1c1ent amounts on his account
to be classified as having oﬁly current charges next
month. The same customer has a probability of .30 of,

being still 2 months ‘behind in the next month.

Some members of the Homer Department Store had
sufficient mathe tical training to recognize that this
le (Table I) could be jconsidered an absorbing Markov
chap. However, they ysgz ndt advanced enough to know
how the questions that-were afked by the president could
be answered from this information. More explanation

was needed.

e

2.12  Stundard Form for anﬁAbsorbing Markov Chain

Before answering some. of the quest1ons ra1sed it
is necessary to rearrange the absorb1ng Markay cha1n to

?\
standard form. This requires_ gnterchang1ng some rows
and columns of the matrix so that absorb1ng states areiz’
placed first. We illustrate this.’ u51ng a simpler
matrix than the one deriwed from Table I. B
Given. the absorb1ng Markov Ghajn in matrix form: - .
a a,* g,. a, ®
3 1, %27, %3 .9 ) .
- a; .1 "0 0 o], .
4 A ) e
ap | -5 ~‘({ .5 ol - - - .
- T ag 0 ‘.8 0 .2 )
a . 1 Y
a4 .0 0 0 1 .

we look for the absorb1ng states From the discussidn,
1n Section 2.9 we should recogn1ze states a1 and a4 as -
absorb1ng states. To obtain & standard form for the .
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matrix, interchangg the columns and ‘rows so that there
is an identity matrix in. the upper left hand corner.
As you can see, this can be accomplished by placing
« the %bsorhiné states first. This does‘'not change any
relationship, i.e., the probabilities of going from
one statge to another are preserved.

j .. % g a3y ag . .
4
e, 1 0 0 0 !
-— M\ .ay 0 1 0 0
LN a, |5 0 0. .5 ?
. az 0 2 .8‘ 0 ,
2.13 Partitioning the Siandard Form ! . -
Once the matrix is in standard form, we can proceed
to pgrtition it in such a way that *four matrices are
fofmedt the original. Later we will see that we
can use%these new matrices to help answer our questions
about the charge accaunts. We partition the matrix in
.this example so that there is an identity matrix in fﬁgﬁ*
upper left hand corner. Thus . o ‘
N S
1 0] 0. 0 I
| S A R
0 1 0 0,
o . —_—————_——= “or ——— e —_———
.5 v 0 Ir-o 5 ‘ "
o s T
. 0 .2‘|.8. -0 ] . | .

. and we label each new matrix as follows.
p .

SEEI A IKE N IS O IR

. * If we review the'original matrix, we can see that the

entries in § are the probabilities of being absorbed, and

+  the engries in T are the probabilities of being in non-

absotbing states. This is trie because .5 is the
- » * 3

' - 17
vag

’
-

probability of going from a, to a,, and .2 is ¢he proba-

bility of gojing from ag to a,. 4 are the two
absorbing states. Similar statements can be made for

the entries in T.) : - ~

(ql aqd a

There is a theorem (which we state but will not
prove he}e) thktt&s useful for oun purpéses. On the
, average, the number of times a process will be in each
nonabsorbing state can be found by caiculating N = (I - T)'1
where I is an'}dentity matrix, and T is the matrix formed
by the partition just made.

Program 8 in Appendix A can be used to calculate
N= (I- T)'1 for our sample problem., However, since
<this is a very simple matrix we will do the calcylations
by hand in order.to illustrate the intermediate steps.

1 0o .51 1 -.
« I T = - =
' [0 1 .80 -.8 1}
A

hd 4 . I~ 1.-.5 “1 16 5— >
S SR I R N
. .8 1 8 ‘10| T~
C 5 -%.
) 43 43
10 5| ° - .
%1% %
Therefore N = ) ‘ g
: 8 10 4
a4z LK K3
AY

.

. '

2.14 Making Decisions Based on Probaﬂility

All the information in a Markov chaineconsists® of
probabilities, but in the case of the charge accounts ~
. these probabjilities were\based on the past history of
a large .number of people's paying habits. They are
likely to be fairly predictive of the -future. In the
aﬁ%eg;é of ‘any other knowledge, past. history form;\the
. o . ~ 18

PR , : .
“i _49 o .
R
. > ) .
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best basis for making decisions about future evénts.

We

, Will interpret the entries in matrix N and see how they
Jform a basis for additional information upon which some

decisions migﬁt be made. -

[

-~

B

/Eﬁe interpretation of the entries of matrix N is
this. Starting in one of the npnabsorbing states, say,
a,, the mean number of times in state a, before absorp-
tion is 10 and in state a The total time before
absor tizr for state 15310 .2 or 15 A similar

sorption @2 1S F T §oTF- 3
interpretation could me made for the other entries,

is %

Question: 1If this matrix had come from the
charge account problem, how would
you interpret the entries? .
Answer: IT a customer was-in state a,, we

would predict that on the avérage .
in 2% months he would either be
paid-up or becdme a bad account.
The row sums of N,give the average time for each
state before it is absorbed. If we wish to find the

row sums for some larger matrix, using the computer,

we can use Program 1 in.Appendix A and multiply N by

a column matrix consisting of 1's.

For example,

10 s 1] .
~ L2 N ) -
o 8§ 10 1 9
5 6 6

-

“%

This is a convenient way to calculate row sums for a
“large matrix. The column matrix should haVe enough -
1's to be conformable for multiplication.

» + *

.. 2.IS The Probability of Reaching a Given Absorbing State

We still’have the question concerning the probability
of a'giV9n absorbing siate'as‘thp final one. If you will
accept another theorem, we can answer this question.
According to the theorem, the.pr04uct of N, just computed,

’ 19

3

'
.

and the matrix S from the pértition on page 17 is a

matrix which g%yes the probabilities of ending up iQ

.2 given absorbing state.

From our example b

J 16 =5 |. 5 0 N
- T 8] 0
N = § =
8 10 0 2
: T % 104 .
Then
a1 a4
s 1
2 |® E]
A = NS = . 4 2 . ‘
, %1% 6] -

We inferpret the entries in matrix A as follows.
Starting in state a, there is a probability of % of
absorption in state a,, and a probability of %"of

/ abso:;;}on in state a;. A similar interpretation is
or the other entries.

made
L]

’

In the original example of Section 2.12 #11 of
the matrices I, 0, S, "and T turn out to be square.
Thisﬁx}ll always be true for I and T, but is not

generally the case for .0 and S.

A
Consider the matrix
below along with its.standard form

a; a, ag .4y ag
¢
. a, M1 0 0 0 0]
\ i a, .5 0 4 0 .1
fy 0 2 7 70 2 .1
rd
N 4 . 0 8 0 2 0
. ias -.0 0 0 0 IJ. B
- The standard form ' s * )
[ 3




~ERIC

“ fragy
PR A 1 ex providea oy eric IS
LI g
. »x

- . the state "paid up"),

<
* a, ag a, ag a4‘

p a, B 1 6] o 0 0 ) -
R LYY
SR et i

; a, 0 .1} .7 0o .2

a, | 0 0 l 8. 0 2-

1 0] 0 0 0]
I = 0=
No 1 Lo o 0 .
.5 .17 N [0 .4 0] )
" s=1{o 1 T ={.7 0 .2
~ A1
0 0_] .8 0 -2 '

If the matrix A had come from the
charge account problem, how would
you interpret the entries?

Question:

Answer: If a customer was in state ay, we

- [ ¢‘would predict that there was a
probability of 5/6 that he would
end up in state a7 (which might be
and there was
a probability of 1/6 that he would
be absorbed in state a,

2.16 Experiment 4

- Form an absorbing Markov chain from Table 1 on page 15. Put

the matrix in standard form and then partition it as shown in

’ . Section 2.13: Use Program 8 in Appendix A to calculfte the matrix

"N, and Program 1 to find the row sums of N and the prodyct NxS.

Write a report on the informatio‘.youﬁ:an give the Homer

Department Store as d result of these computations.
£

P

("bad account").

21
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2.17 Model Exam (Unit 111)

1. +Show that this matrix is a regular matrix. -
\\<> \ ro g
~L7 1 -\

_Il- EJ : 1

9. Find a fixed-point for the following matrix.

3 0]
rr 1]
1

7 1]

3. If P in question 3 is raised to, the 100th power,, what is

- L

the approximate value of the entry in the first row, first
V ‘

Joe, as a student, is not very regular in completing

column?

F =
.

assignments. _However, if Joe is late with an assignment ¥
on oneuue date, he is 70% sure to havé’the next one in

on time. If he finishes an assignhent on time, there is
only a gg% chance that he will finish the next one on
tﬁne. In the long run, what percent of time does Joe

miss due dates for his assignments?

5. Does the followjng matrix represent an absorbing Markov

chain? Give the reason for your answer.
° ¢
.

°

R <«

Mo o o
0 0 .5
0o 1 o0
7 0 .3

.

.
o o wn

L4 - ~

Put the following absorbing chain.in standard form.

, -

o
(=T ]
(=]

[N
[
~
v
~

¥

as .2 .3 3.2
a 0 0 0 1 o '

Which are the absorbing states in this chain? 22

. -
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e 8
L. .
A

. v v N
o 7. . 1f we start in state az, how many steps will there qbe on

the average before absorption?

What 1Is the probabili‘ty that if we start in state a

Exercise 1:

“3. ANSWERS TO EXERCISES (UNIT 107)

“o

2° : .
. » - a, to a = S
absorption’will occur in state a4? . - 2 - 1 p2_1
N ) ' - = =
a .. - , ) a, to a, Pyy .6
. A Q
] -
®« . - . .o . Ip % Ppz = -3
* . R N
> . @3 10 a; Ps; 01 . .
] . »
- . . .. . a; to a, =Pz .15
~ . 8 S . . . a,toa 8y
¢ . . : - 3% P33 : » e
e ..
\ ’ . . 4
< N . . N - . -
4'\ B} ) . »
S Y
) ‘ 4 * R
R .’ v
‘ | R
.
. . .
- , ' “" ~ Ed .
N ~
€ ‘
» ’ * T ¥ n\ ' . * * 1
. > >
\ . N ‘
‘¢ ¢ .
. ¥ .
. v ' - -~ N
’ i ' ° . . ’
- . * . . - s t
54 - : '
\ : ’ .
. % .
- .~ -
., ‘ ) .
. * L P .
° \
Do , : ~J :
- : .o . , = 59
. v ‘/3 ) .
. [ s, Bl . 3 ) )
1 e
» . . ) . . ‘t v . P
- s - b 2

24

L




. r.

. ° .

‘x . .
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° .

. P - © \ \ .
4T ANSWERS TO MODEL EXAM (UNIT 107) R L of "'°"a"”'“es froma; to as, a; toay, a, toa,. Thus

) the probabnlity that the rat leaves the maze is 1- “1/3-1/3 =
1. Each element, a.a., represents the probabilityithat a process 1/9. ~

which starts in the zth
one step.

4
state will go to the j§ th state in . . : - -~ °

J can be equal to ¢. o . .

2. Each - row in a Markov matrix represents ‘the probabilities " : ’ "

for all possible next states. The sum of these probabili-é v ke

ties must equal 1 to account fer all possible states "

“,:: 3 ' . ) . - / 43 . o ) - ’
PSR - 3 ‘e
. v
[N ¢
. 7, - °
¢ N . a1 ‘ a K

. o &

-t
>

o

x

o
=

-]

<

s 0
g

3

"

-

v

-
N
2

)

"0

0

0

"2’
1/3 143

0

/2 o0

173 e
M3 a3 o 13

.

N *
L

:
N

as |0 0 0 o

. . AR S . A

o
1 -
The probability that- the rat .‘Ieaves-’the maze in three

trials insl/9. n‘:deed, from the tree diagram above, the

only”| Possibility‘for the rat to leave the maze is to travel
.through the branch d1 — ﬁ

4o
.

4' - a5 . By the compound
robabf'llty rule, the proba'bllity of this .event is the product
N

» ZS

ENN '
. o\
..t . )
. : ’ :




. ! . .. . \ ‘
N ’ > ¢ \ o ,%
] . * ’ r- ’
7 k4 - ° Al . . . .
‘ 5. ANSWERS Td EXERCISES (UNIT 111) . Tt 6. ANSWERS TO MODEL EXAM (UNIT 111) |
A M . [ !
t * - 1 3 :
. - . 1. 0 1 0 1 .
/ Reason . P2 = l_ ) x = i ]
- There is an absorbing state, and . 1 3 1 3 3 9 )
‘ Ta, absorbing ere is ¢ : ’ o .. L-E n L-E E_] & % .
3 J . there is a way to reach it. o ' .
?‘J ° . . . a . - ‘ .
’ b.  nonabsorbing There is.no absorbing state. ) Since a power of P is positive,“the matrix is regular
. s * 7 4
/ ' c. absorbing There is an absorbing state and a . 2. % 11‘_ )
/ ! . . . . -
way to reach it. - - -2 I g
./._ . o . " . : [\fl / xa 1 1 l:xl .’c2] [3/ ‘ '
! d. * absorbing There is an-absorbing state and a 7 2 c - .
. way to reach it. . ] . . E
- 3 . - >
¢ : , - S 2 /
y . . T, .. N\
) . H H & ime!t! I .
i . . &, Let a, represent 'assignménts on tamfe probability, and a, \_’/
g - s . Tepresent 'assignments late" probabitity. Then

‘ | o . o ( ' _ al/az\’

, . - ’ . . ks M .A,ﬂ , . - 'al I_Z . .8 ) - 1
i : . a,’ l_ .\7 .3_ 7 | oo
- : is the Mquév chain for this problem. Solving for the fixed
‘ . . . X .1 . 8 i
. . . ¢ point for this matrli(,‘ we find a; = 15 and a, = 7T The .
. . , long run probability’ that Joe's assignments will be late is 4
’ . - . 8 . v
- : L 53.333% (]5 . ot . *
< . : 5. The matrix represents an absorbi_ng Markov chain. It has two
, - ’ absogbing states, a; and a,.
~., 'Y . 6 <
- . ] _ . . - ) a, - a, . a,. a, )
. - Y L a; [t 0 0 b
- , - . a, 0 1 0 0 .
~ X a 1 2 2 5
. . PR 2 ’
g . a.i A4 - ‘/k - .
\ <4 2 .2 3 3
{ 3 R .
. ; States a, and a4 are absor'bing. .
= ' ‘o : 28
) y 17 * 59
. O . .

CERICT - . ¢




1.227]

- - -1
N=(-1)" « |8 .s:l =l:|.7o
’ -3 7 73

1

7

1.95 |

The number of steps before absorption, beginning in

3 is
approxima 5 =2,68.
8. N x s .70 122\, 1 .2 41y .584
. .73 1.9 2.2 463 586
' \
The probability is 58.4%
s o i 7/
_ 7" Partial Answer for Experiment-4- g
Paid-up Bad 0 1Y 2 3 - § 5
. —
Paid-up 1 0 0 0 0 0
Bad 0’ 1 0 0 0 0
e 25 | oo ff 60 i .15 1 0.0 V0.0 | 0.0 | 0.0
1 220" | 0.0 f| .20 | .35 | .25 | 0.0 | 0.0 | 0.0
2 3 F oo lf g0 | 20| 30 27 | 00 ! 0.0
3 -10 J 6.0 4-.05 ] .10"| .20 | .18} .37 | p.o
A A5 § 0.0 .02 | .03 | .07 | .30.] .28 | .15
5 06 | .i5 || .o 04 [ .04 | 0.0 | .25 op .45
o:l [o 0 0o o o o]
0= RN - [ e
1 "7 Lo e, 0 0 o o_l
NG ~t
#) .25 0.0 $0 .15 0.0 0.0 0.0 0.0 |-
.20 0.0 .20 .35 .25 0.0 0.0 0.0
s = .'g 0.0 Te]-10 .20 30 27 0.0 0.0
10 0.0 .05 .10 .20 .18 .37 0.0
.15 0.0 .02 .03 .07 .30 ..28 ‘Mg
.06 .15 | .01 .04 04 0.0 .25 .45 |
‘ .
-
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Y,. .0 x
x = | ' ° - ‘(
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e - T APPENDIX A | !
L PROGRAMM 1° . - a : );
¥ ?h--o-APPLICArluNs OF MATRIX METHODS - PROGRAM 1
T . - CessseTHIS PROGRAM PERFURMS MATRIX MULTIPLIGATION ON ANY NUMBER OF PAIRS
Ca, - OF MATRICES R
. '+ DIMENSION A(20, 201 ,8120,201, €120,20) , [HEAD(40) L
(##2saNR = LOGICAL NUMBER FOR THE CART READER. o

< ‘i NR = 2 . - r o .
' L*'*‘*NP = THE LOGICAL Ngﬂégk FOR THE PRINTER. ki/ *, (
' . NP = 5., o .

. d\'!!!RERD JDENTIFICATION CARD.: LAST CARD SHOULD CONTAIN /% IN COL. 1-2 o~
S 160 . READ(NR,1,END=T0) IHEAD

L FORMAT (4042). ) R ' T
% ] WRITE (NP,3) IHEAD , o
“ 3 FUORMAT (1HL 4942 /) . ’
$ . CwewseREAD THE NUMER OF ROWS AND COLUMNS IN THE FIRST MATRIX.
‘e READ{NR,5) NROW, NCOL :
LT s FORMAT(215])
9h-i0!kEAD THE FIRST MATRIX. | .
DU 10 I = 1,NROW , :
) READ UNR, 7) (A(I,J),J-l NCOL ) S
-7 JFORMAT(1OF5.0)- :
. U, . CONTINUE (
" .C¥s#ssREAD THE .NUMBER. OF ROWS:-AND COLUMNS IN THE SECOND MATRIX. . .
" . READINR;S5) MROW,MCOL - . . _
. .- DO 20 I =<1,MROW ¥ e * ’
.+ (wéw##READ THE SECOND MATRIX. . " # - ‘ L . A

. 20 REAUINR,7) (B(I,d)4d = 1,MCOL ) -
S CeesadCALL THE SUBRCUfINE TO MULTIPLY THE MATRICES. .
.+ CALY 'MATMY(A,NROW, NCGLyB,yMROW,MCCL,C)

Y. ¢ CessssWRITE THE INPUT MATRICES. . . < . . )
e ~uRITE(NP 25). s . . o
w0 a5 T FORMAT(SX,'INRUT MATRICES'//) - X
K 0O 35 I = 1,NROW . - ‘ . - . )
, WRITE (NP,30)" (AlI,d),J = L;NCOL) ) : e .
.30 . FORMATI(5X,L0FL0. 3) - T SR :
35 CONTINUE . . .
- WRITE (NP,40) - ~ ~
4G ¢ FDRMAT(///[N _ _ o
DO 50 I = 1,MROW ’ . - - ’ ' :

50 WRITE (NP 430} 2(B(I,4d),4°= 1,MCCL)
Cenen¥WRITE' THE MATRIX PRODUCT. -
WRITE (NP ,55) (
55  FORMAT(///5X,'MATRIX PRODUGJ'//) .
DO 60 I = 1,NROW
60 wRITE(NP.so) (C(I,J),d-lyMCOL)
(C#eeesRETURN FOR A NEW PROBLEM.
GO TO 100
70 CALL EXIT




L]

PROGRAM 6 < —

c....APPLICATIONs OF‘MATRIX METHODS = PRCGRAM &
DIMENSIBN A(20 4),8(20.4) C(ZO 4),1HEAD(40),08L(20.4)
NR = 2 )
NP = 5
Ce=+s#READ, PAGE AND WRITE HEADING

READ(NR,1) IHEAD

-

1 . FORMAT (40A2) .

WRITE{(NP,3) THEAD . , - ‘

3~ FORMAT (1H1,40A2//)

Ciit*CREATE ‘OBLIQUE TRANSFORMATION MATRIX FGR ‘PLOTTING.

DO 41 = 1,4 , -
. DO-4 J = 1,4 .

4 08L{I4J) = 0.0
0BL(1415= 1,0
0BL{242) = 1.0
0BL{4,4) = 1.0

. 0BL(3,y1 ) = -0.4333
© 0BLI342) = =0.2500

Cess#READ THE NUMBER OF pokNTs, MAX
READ(NR,5) N . -

5 FORMAT(12)

CesssREAQD THE COORDINATES OF THE poxwrs CN THE FIGURE.

DO 10 I = 1,N .
READ(NR,6) (A(I,J),J = 144) ’

6 9F0RMKT(4F5 0y’ .

10, CONTINUE '

Cesan THIS TRANSFORMATION IS CARRIED ouT TO sxve AN 0BL IQUE PROJECTIDN.
Cee2sALSO, THE Z AXIS IS FORESHORTENED.
CALL MATMY(AyNy4,0BL % ¢4, C)

WRITE(NP,15)-

15 FORMAT(SX,‘ORIGINAL FIGURE’:I/)
CALL KPLOT(CyNy1a040,1)

Cesss2READ, PAGE AND WRITE‘HEADING"

100 READ(NR,1,END=30) IHEAD
HRITE(NP:3) IHEAD

CepseREAD THE TRANSFORMING MATRIX
DO 20 I = 1,4
READ(NR36) (BI(IyJ)yd = 1,4)

20 CONTINUE
CALL MATMY(AyN94 9B y4 94,C)

CALL MATMYI(C, Ny4 ,0BL y4 44 ,8)
‘CALL KPLOT(B,N, 1.,0,1)

GO 70 100-

CALL EXIT

N

L)




¢ wwans PRDGRAM 7 APPLICATIO&S ‘OF. MATRIX METHODS

, WRITE (NP y6) IHEAD : B -
6 - FORMAT(1H1,40A2,//) ’
Cesmse READ THE NUMBER OFC ROWS AND cotumns IN THE MATRIX.
Cee¥we N = THE PUWER TO WHICH THE MATRIX. IS TO BE RAISED.
READ {NR y 1 09 NROW , NCOL o N : -

16 "FORMAT(3IS). . - LT
DO 20°1 =.1,NROW e . | ’
READ (NR,15) (A(I.J);J~tpNCOL)‘ _ :
15 +ORMAT(T6F5.0) . »ﬁ? . T
. ¢0 CONTINUE * © 5 oL ,
- Do I = L,NROW . ° 5
DO 30 J ="1,NCOL ™ , . ~ ' -
30 B(I,Jd) = AlI,Jd) , S SN
. D050 K = 2,N S 3 ¥
CALL MATMY(A,NROW,NECOL,8, NRON ncdt ke
00 %0~ 1 & 1,NROW , A U
: DO 40 J = L,NCOU ¢ " g o o
40 Al1,J) = ClI,Jd : .o “ l
50 CONTINUE S 27 ¢ ﬁ -
: LU 70 I = L,NROW ° ' =z R
WRITE (NP 560) (A(I,J99d=1,NCOL) N\

60 FORMAT(5X,11F8.4)
0 CONTINUE

CALL EXIT ) N
ENU , , ‘
9‘ ¢ \
- ¢ 11 *
1
A et
-1 -
y
1
t . , . 3 2

. C =#wss PUWERS OF MATRICES 4 \
. DIMENSION mtzo.zo).a(zo 20)4C(20o20).lHEAC(40) -
NR = 2 e, .
NP =5 . S oy b -
. READ{NR,5) IHEAD R -
5 ' FORMAT(%0A2) ot - ) ,

>

P
t




PROGRAM 8

-

v *

CowswsAPPLICATIONS OF MATRIX METHODS - PROGRAM 8
DIMENSION A{20,20),T(20,20),C(20,20), IHEAD(40)

NP = 5

NR = 2
CPeswsREAD HEADING AND IDENTIFICATION GF INV\ESTIGATOR.
1 READ(NRy10,END=50) IHEAD

10 FORMAT (40A2)
WRITE (NP,20) IHEAD
20 FORMAT(L1H1 ,40A2//)
CesanseREAD THE DIMENSION @F T~ \MUST BE SQUA7£
READ(NR,25) N
25  FORMAT(I2)
CuennnsREAD THE ARRAY T
DO 35 [ = 1,N -
READ(NR30) (T(I,J)9J=1,N)
30 FORMAT(10F5.0)
35 CONTINUE ‘ e
Cosseat-ORM IDENTITY MATRIX .
CALL IDN(A,N)
CexnuCALCULATE. I - T, :
CALL MATSB(A,ToNyN,C)
ConuwCALCULATE THE INVERSEGF I - T.
" CALL INVERI(C,N) - ‘
DU 45 I =-1,N
WRITERWNP ,40) (C(1,J)J=1,N)

" 40 FORMATY5X,10F10.4)

50

45




Y

SUBROUTINE MATMY

A

“ »

< ~

>SUBROUTINE MATMY(A,NRON,NCOL.B.ﬁRGN,MCO
DIMENSION A(ZO{ZO)yB(ZOyZO)yQi%OvZO)

L]

NP 5 -
[F(NCOL~MROW)20410,20

20 WRITE(NP,15)
15 FORMAT(5X, *NUMER OF COLUMNS IN FIRST MA
LROWS IN SECQOND MATRIX')
. CALL EXIT .
.10 DO 40 I = 1,NROW AN
DO 40 J = 1,MCOL
ClIs+d) = 0.0
.. D3 40-K = 1,NCOL
4y C(Isd) = CUIsd) + A(I,K)%B(K,J)
RETURN"
END

N

. SUBROUTINE MATSB .

et

)

LyC)

}

TRIX MUST EQUAL NUMBER OF

.

%

*UNE WORD INTEZGERS
SUBROUTINE MATSB(Ay By NROW,NCAL,C)
CIMENSTUN A(20,20), 8(20,20), C(20,20)
OC 10 I=1,NROW .

DO 10 J=1,NCOL

C(IpJ)_. AlT4J)-B(1,4)

RETURN r

CND

10

»

-
»

SUBROUT INE IDN.

a

*UNE WURD INTEGERS

#LIST ALL -
SUBRGUT INE IDN (AyY)
DIMCNSION A(20,20) - -
CO 20 I=1,v

DO 10 J=1,A p
1) ALI,) = 020
20 A{I40) =*1.0 .
RETURN -
END

65




, €LIST

\ | g :E

20

SUBROUTINE INVER

ALL

*CNE WGRD INTEGERS

SUBROUT-INE INVER(XsN)
DIMENS ION x(zo.zoa.Atzo.40)
DO 10 I = I,N

DO 10 J = I,N

ACT B = X(1,J) ,

'M=J+N - N

IF(1-J) 20,15,20
A(1,M) =1.0 .

30
IC1

4y

45

50 .

55

60

GU TO 10 )

A(I,M) = 0.0 .

CONTINUE % R
W0 55 K = 1,N* 'Y :

PIVUT = A(K,K)

IF(PIVOT) 135,30,35 - .

WRITE(5,101) ' . s,

FURMAT(///,5K1€R0 PIVOT')

CALL EXIT . .

AlKyK) = 1.

IR = K+l ot .

M = K+N ' 1

DD ‘00 J = ’\'M

AlKyJd) =, A(KyJ)/PIVOT
03 55 1 = 1l,N —
[F(I-K) 45,55,45

PPVUT = AlI,K)

A(!'K) = 0.0 '

DU 50 4 = IRyM

A(TeJd) = AlI,J) - PIVOT*A(K,J)
CUNT INUC

IR & 2%N ' »

K = N+1 s

Cu 60 1
JO 60 J
M = J-N ..

X{IyM) = ALIyJ) i -
RETURN . .

ENQ

nH
—
-
— L

“
AN

35




SUBROUT INE KPLOT B -~ ) . .,

»

SUBRUUTINE KPLUT(Cv[RUNvSyIRvIP) . .

C**%%xTHIS SUBROUTINE IS THE SAME AS [PLOT EXbEPT Tgﬂl IT SETS UP 3 AXES.
INTEGER PLANE(41,71),ICHR(20) . :

REAL C{20,2) ' i -

DATA IBLKyIX/Y ¢, 0/ .

"DATA TCHR/'AY,*B,1CH,4D1, 11 21, R N R I I .

1 *N* 000, VPY,1Qt R 158 T/ . )
C*%#%x S [S A SCALING FACTOR TO BE USED IF COORDINATES ARE OUT OF RANGE ° .
CHx%¥%x RANGE [S FROM =20 TO +20 ~
C***xx SET/ IR 0 TO BLANK-OUT GRAPI{ FRAME - \
C¥**xx SET. IR = 1 TO PUT"NEW GRAPH IN WITH PREVIO'S U.E..
C*¥%x*¥% SET IP O TO SUPPRESS PRINTING OF THE GRAVH ——
Cxx¥%%x SET [P 1 TO PRINT THE GRAPH

CH®x%% NP = NUMBER FUR PRINTER. -
R ‘QP S ~ . ) (]
I

DO 7 J = 112 - - . ! ‘u C
7 ClIyd) Clly,d) ¢ S - _ : .
6 IFIIR)15,8,15 . .
8 D0 10 1 1,41 . » ) o
LO 10 J = 1,71 , £ ‘ : : ]
10 - PLANCG.I,J) = IB8LK
VU 20 J = 36,712
26 PLANE(21,J) = IX
J = 34 <
D0 251 = 1,10
; PLANC(I*Zle) = IX
25 J = J-2 )
U0 30 I = 1,20.
30 PLANET(T,36)= IX C .
15 DC 40 K = 1,lROW ) .
J = 36 + (50/30 L C(Kfl’ + 05’ -
) IF(J) 40,640,435 -
35 IF(J-T1)36,36440" -
36 I = 21 - (C(Ky2) = .5)
~ IF(I} 40,40,37 )
37 ° IF(I-41)39,39,40. - ‘ . N
39  PLANE(I4J) = ICHRI(K)
40 CONT I NUE
C#**%% RESTORE MAIRIX C IF IT HAS.BCEN SCALED.
R [F(5-1.) 42,43,42 ) .
42 SI = 1./S
‘ DO 44 1 = 1, ROW

(S I 1]

s DU 44 J = 1,2 -
C 44 CUI J) =-Cl1,d) *SI -, - , ~
43 TF(IP) 45 6945w . . ~
45 DO SO K g 1541 .
< 50 WRITE (NP 60) (PLANC(KyJ)gd =I,71) , *
60 FORMAT (5X 7141) -
65 RETURN = o A
» . N .
c‘N D ’ﬂ \ n ’ PR 56
. : ~ %




. LY

‘Return to: >

¢ STUDENT FORM 1 EDC/UMAP
. - : 7 55 Chapel St.
Request for, Help , Newton, MA 02160

‘
\

Student:.

out this

™

If you have trouble with afsbecific part of this unit, please fill
form and take it’to your_instructor for assistance. The information i

_ you give will help the author to revise the unit.
Your Name ) " Unit No. .
Page ‘ A ' " t i
1 Section . . _:7ﬂodel Exam .
O Upper OR. < OR . . Problem No.
OMiddle Paragraph ’ ‘Text -+ o
O Lower / , Problem No. .
4 i o *
Description of Difficulty: (Please be specific) " !
‘ J
~ 7 -
) ‘\ ’ 7
- <4 ™~
, s
Instructor: Please indicate your resolution of the difficulty in this box. 1 -
<::> Corrected errors in.materials. List corrections here: - - vo.
A ' ' r . J

. \
: /

¢ + €= -
] ) .

que student better explaﬁétion, example, or procedure than in unit.
Give brief outline of your addition here: | ‘ .

[
. L ,

s

Assisted student in acquiring general learning and.preblem-solving\{
skills “(not ‘using examples .from this un}t.) - >

- . ] . - ’ -
s ' o ‘
. fe . £, . -
- . . \ .
¥ —_ . . - . »
- . N . . ‘e ) : . .
- 6«8 : . - B . . .
PR - b « N , - - 2 . . y .. A'
L T * Instguctor's Signatuge v A R
. ’ -~ N LN .
- s ' .

. . ;o Pleése‘useﬁggverse if necessary. , . S

L - M N




Return to:
STUDENT FORM 2 EDC/UMAP
i ) ¥ 55 Chapel St.
Fewton, MA 02160
Unit No. . Date - ~ b
Institution : ’ \ Course No. "

Unit Questionnaire

Check the choice for each’ queétion that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

\
Not enough detail to understand the unit
___Unit would have been tlearer with more detail
Appropria:e gmount of detaid
— Unit wass occasionally too detailed, but this was not distracting
" Too much detail; I.was often distracted

.

How helpful were the prdbleh answers?

, -

' Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was,given to solve the problems .
Sample solutions were too detailed; I didn't need them

Except for fulfilling the prerequisites, how much did you use other sources (for’
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little Not at all

How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a~typica1 math or science course?

Much . Somewhat About Somewhat Much
_Longer Longer ___ the Same . Shorter Shorter

-Were any of the.- £ollowing;parts of the unit confusing or distracting? (Check
as many as apply )

____Prerequisites
_~ Statement of“skills and concepts (objectives)

___Paragraph headings - . . - ,\‘ .;.
Examples . . \X \\\\_,,:._L/"‘:f
____ Special Asdistance SuppIement (1f, present) » .

Other,,please explain -

Were any of the following parts of the unit particularly helpful? (Check as many
as apply.} .
._Prerequisites & b

Statenient of skills ana concepts (objeétives)

Examples. ~° ) )

. Problems ] L .

Paragraph headings ’/,'

Table of -Contents

____Special Assistance Supplement (if present)

Other, please explain

Please deécribe anything in the unit tifhe you did not particularly like.

-
’

Please describe anything that ygu found particularly helpful. (Please use the back of
this sheet if you need more space. )




nm¢'5(d>,n.1.od_uo.3aﬂ\(xv“guj.;gkg

UMAP

MONOGRAPHS IN
UNDERGRADUATE
MATHEMATICS .
AND ITS

APPLICATIONS
R %> 8 oA

*W-V.Y 16 HZadUVvJ
W VY I'6HZdUV I
M I e H

N

AN
N

Z

—
~
—

11}

—
-
-

d U 0
n'mzﬁXén.Lnd_Jeognrlyx.':ga_}ag’kg

T 4. 00
n'm‘)ﬁ-"fcld>’n1.pduogaﬂ\(xvgjzj;.g'.(.g

C
pos J
.
M

4

SRS e )
Birkhauser Boston Inc.
380Green Street
Cambridge, MA'02139

'MODUL

4 v-Jd g Vv

Z -

108 &
112

Electrical . |
-Circuits (U108)
and
Applications of
Matrix Methods:
Analysisof -
Linear Circuits

(U112

by Sister Mary K. Keller
¥

10 amps

.'(0 ..-a-."




-

. ! X .
Intermodular Description Sheet: UMAP Units 108/112

Title: ELECTRICAL CIRCUITS (U108) and APPLICATIONS OF MATRIX
METHODS: ANALYSIS OF LINEAR CIRCYITS (U112)

Author: Sister Mary K. Keller ﬂ/{ ¢
Computer Sciences Department
Clarke College

> Dubuque, Iowa 52001 p

.Review Stage/bate: - IV 7/30/80 - .
Classification: APPL MATRIX/ELEC 3

Prerequisite Skills: .
1. Familiarity with solving systems of equations by matrix methods.

Qutput Skills:, . ’ L

1. Be able to construct a system of equations representing an -
electrical circuit using three laws of circyits.

2. Use a computer program to test a system of equations for
consistency. v !

3. Use a computer program to find,a&gﬂque solution for a system Lt .
of equations if one exists. r . .

4. Recognize that a system of equations may be over-determined and
still have a unique solution; . .

kY
Related Units:

.
, Food Service Manageméntvévnit 105) and Applications of Matrix

Methods: Food Service and Dietary Requirements (Unit 109) ..
Computer Graphics (Unit 106) and Applications of Matrix Methods:
Three Dimensional Computer Graphics and Projections (Unif 110)
Markov Chains (Uit 102) and Applications of Matrix Methods: Fixed
" Point and,Absorbing Markov Chaing {Unit 111)

The Project would like to thank George Springer of Indiana *

" University and Kenneth Rwaf California State University at

Hayward for their reviews’ all dthers'who assisted in the pro- - .
duction of this unit. ) .

This unit was field-tested and/or student reviewed in prelim-
inary form by Julia P. Kennedy of-Georgia State University; Philip
H. Anderson of Montclair State College; Kenneth C. Wolff'of Montclair -
State College; T.R. Hamlett of Arkansas Technical University; and
Michael J. .Kallaher of Washington State University; and has been
revised ogﬁthe basis of data received from these sites. v

. - ~N .

+ This material wds prepared with the partial support of National
Science Foundation Grant No. SED76-19615 AO2. Recommendatigns ex-
pressed are those of the author and do not necessarily reflect the
views of the NSF or the copyright holder.

.

Y .
© 1980 EDC/Project UMAP
. All rights reserved. R
t oo %
R . ..




1. ELECTRICAL CIRCUITS '(U108) . . . . . . .. .. " ... ... 1 ¥
¢ 1.1 Introduction . . . .,. . e e e e e ——d
. 1.2 Laws for Efectrical Cqug}ts e v e e e e e e e e 1
1.3 Solving for Linear Systems Using an Inverse Matrix . . 2
1.4 Consistent and Incondistent Systems of Linear
. ‘Equations . . . . . . .. .. oh ... . e e e o . 4
A 1.5 Existence Theorems e e e e s e e e e .. 4
1.6 AnExAmPle . . . . . . . i e e e e e 6
1.7 Experiment 1 . . .. ., ... e e e e e S e e 7#‘
. 1.8 Model Exam for Un1t 108 . N I
-~
‘2. APPLICATIONS OF MATRIX METHODS: ANALYSIS OF ' ' L
P LINEAR CIRCUITS . . . .. Z.. . . e e e e e e B
..’ =
. 2.1 Introduction . . D T .
- . 2.2 Elementary Row 0perat1ons e c e e i e e . 9 I
2.3 Exércises Using Elementary,Row 0perat1ons e e e e 10
2.4 Row Equivalence ., . ., , .. . . ... e -
' .2.5 Row Echelon Matricds . . . % . .. . .... . 10
: 2.6 Using Row EcRelon Ford to Solve Systems of Equat1ons .12
, 2.7 Examples and.Exercises . . . . . ... B &1
- 2.8 Electrical Circuits Rev§s1ted e e e e e e .. . 15
2.9 An Example of an E1ectr1cal Circuit . . .. ... ... 15
2.10 Experiment 1 . .-, S 1
- A Model Exam for Unit 112 D T T 20
.
3+ ANSWERS TO MODEL EXAM (UNIT 108) .°. . . . . Ve 22
< A,  ANSWERS. TO SOME EXERCISES FROM UNIT 1z .. ... 00 0022
N .
5., ANSWERS TO MODEL EXAM (UNIT 1{2) ...... e e e e 23. "
) APPENDIX A . . . . . . R £
. . .
- . §
\
- ] -
R ’
’ (v - .
72 Sy
R . - v
Q . .
ERIC
. LR ¢

[ A et Provided by ERIC

.

ELECTRICAL CIRCUITS (U108)
AND

APPLICATIONS OF MATRIX METHODS: .
* ANALYSIS OF LINEAR CIRCUITS (U112) : -+

4 by -

Sister Mary K. Keller
. Computer Science Department
. Clarke College ,
Dubuque, Iowa 52001

TABLE OF CONTENTS




>
3

1. ELECTRICAL CIRCUITS (U108)

1.1¢ Intrbduction .

o,

You may be azarg that matrix methods play an important
part in solving systems of linear equations. We will
examine a few aspects of this problem whlch are treated
more completely elsewhere. We turn our attent1op to the
way in which a system of” equat1ons might arls% from a ..
simple problem in physics dea11ng with an electrical
circuit. . i '

. [ ~ °

Most people have a general notion of what is meant
by an electrical current flowing in a wire. The flow
of electrons in a wire is somewhat like the flow of
water in a pipe. To produce a flow of current, some % ¢
source of power is needed, such ds a battery. There is - .
also a part of a circuit which consumes power. This is
a reszetance. Current is meagured in aﬂberee, the source
of power in wolte and resistance in ohms. o>

1.2 Laws for Electrical Circuits .

v

In studying circuits we will use three laws. We
first state the laws, shen-show how they arg applied.

- . 1« The sum of all ﬁ-rents flowing to a

point equals.the sum of the currents
. flowing away from the point. g
2. The algebralc 'sum of the voltage drops

"~ around any loop of a circuit is zero,
" 7 3. The voltage 4Qrop between two points of ) )
a circuit+algebraically equals the d
- product of the current and the resist-

. ance between the pointd, '

. .
‘To illuStrate these laws we use the cifcuit shown
' in Figure 1. The symbol-——\A/\——-represents a resistance, .

. - , ‘

[ ~ -

« . .
i a
E K ? * )
- ‘
. N

o




Figure 1.

-

Ten amperes of current are flowing Mo point A;
therefore 10 amperes must be flowing away from point A.
If il and i, represent the currengs in the upper and lower
branches of the circuit, respectively, then

i)+ 1, =lx0w (1.0)

Across the resistor in the top branch there is a
voltage drop, which we will label 2y The third law tells
us how to calculate this voltage drop from the values of
the resistance and the current: !

e = 311.
Similarly, in the bottom branch

e, = Siz. ,
Finally, we note the opposite directions of the current
at point B and apply the second law, to obtain the -
equation

: . . 3¢, - 54, = 0. , (2.0)

1.3 Solving Linear Systems Using an Inverse Matrix

- To find il and iz in the circuit shown in Figure
v+ 1, we now have the system of equations

iy + 1, = 10 - (1.0)
(1) \ , :
¢ 31—1 -\51«2 j 0 v (2.0)
2
) , )

Q . ’
ERIC .
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which can be solve{i.easil'y by substitution. The solution.’

can also be exp¥essed in terms of matrices.

The matrix e o
‘Y .

of coefficients of the system in (1) is . °
.o 25
a A = . . . -
A 4 o
> -3 "3 AL ¥ ~
If we write the unknown values as the column vec‘on\ ’
' 3
R X
v 1 . v
X ’ Ex] 9 N
7 ‘ . -
2 +
%and the constants on the right hand side of the equations as
ARy - - ’
. . [10 R
V‘:\ N B = ,
0 ' !

then the system of equations can be written as

(2)

AX = B,

4

s

v -

3

One way to solve for X is to multiply both‘sides of
Equation (2) by “the inverse matrix A'l,,,éto obtain -

-t _ .- .
« ATAx =41 .
-1 ‘.
, Ix=4alp
X = A1p. o, P

°

The matrix I in this calculation is the idéntity matri
Since the inverse .of A in our particular case is

N

5 1 R
T 37 .
I'4 - ]
Al - :
. 3 -1b i
¢ , . -3- -8] .
we have . . v
, 5 1] 25 .
: 3! L ’—'8' g| |*O T]
=X=A""B = = e
M ’ 3 1 . 15
i 5o LA T :
- X * - » 3
* * - o

O

. .. : . s N
ERIC . .. .
. . -




From this'we conclude that

i, = %é amps and i, = %? amps .

.

.,
. -
>

Consistent and Inconsistent Systems of Linear

Equations »

A system of linear equations is said to be consistent
if there is at least one solution for the system. An

inconsistent system has no solution. To illustrate this
geometrically for a system of two linear equations in two
variables, we may represent each equation by a straight -

3

lihe, as in Figure 2. - -

1.5 Existence Theorems

N There are theorems about systems of linear equations,
called extstence theorems, that allow us to determine

whether a sybiem has no solution, a unique solution, or
an infinite number of solutions. As you continue your
study of linear algebra, you will learn about thesd o
theorems ,and their proofs. Program § in Appendix A applies ’

these theorems to systems of linear equations. You can

use this ﬁ%ogram to.investigate the nature of the systems
1]

g}th which you work even though you have not studied the

theory. .




A. Consistent, one point 1n common,
un1qhe solution.

B. Consistent, all points ip common,
infinite number of solutions (L

and L, are two names for the same
line)?

YA

ér;——
4&1‘

.

C. Inconsistent, no points in common,
no solution (L1 and.L2 are parallel).

?igure 2.




1.6Q An Example

”

. Let us apply the three laws for electrical circuits
‘ to the following circuit.

3
e
H

»
3

.

Figure 3.

=] .

Using Law 1 we have the following:

-

For points: A 1y +fi4 = 8
: ' B 1:2+1:3=1:1¢
! € i3 +iy.= ig
' D; t2 *i5 =1 X
. Using Law 2 we have: -
. For. loops: *
ABC _6£1 + ?iS =134, = 0
©4 7, . BOD 9, - Tig - 245 =0 .

ABCD 6£1 + 9£2 - 7is - 3i4 =0

L tis

JAruiToxt provided by ERIC

k4 y .

We can arrange these equations in

Since we have five variables and seven equdtions the
system seems, to be over-determine).

\ ‘. °

the form AX = B.

A system of equations
said to be oVer-determinedowhen the number of equations

6




'

is iarger than ¥he number of variables involved in the
equations. It is possible to mdke substitutions which
eliminate two of the equations. However, it is™not
necessary to do this. In many.practical problem§,
systems of equations which are derived ¥rom physical
situations may consist of 50 or even 100 or more N
equations. One bf the benefits of matrix thg?ry is

that we can use it to find out whether an over-determined

«
1)

systém is consistent, a wheth@r or not the system has
a unique solution. x

1.7 Experiment 1

Consider the system

2x + y -
x ¢
Sx -

. 6x - Sy -3z=18 .~ .

Is the system consistent? Is there a unique solution?

1.8 Model Exam for Unit 108

T

1. A system, of equations which has more equatigns than unknows

. '

variables is called-

2 ’

’
If a system of equations has two equations and two unknowns,

the systenm is if the graphs of the

equations intersect, the system is

if the graphs are identical, and the system is
if tﬂs_graphs do not intersect.

Consistent systems may or may not have

solutions, ‘\\

Find the values of ¢, ,, and i, for the eléctrical circuit

on the following page.

)

”

oA

Aruitoxt provided by Eic:




* Y
30 amps B N
7
. N
Figure for Model Exam Problenm 4.
S. .Use Program 5 to investigate the nature of the solution, if
it exists, for the following system:‘
w - y + 32+ w=1
x+ 48y - z2+ Ww=14
Sc + 2 +5z+4uw=0
’ Note that this is an "under-determined” system in the sense

that it has more unknowns than equations, but it is stiil

possible-to investigate it with our program.
°
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2. APPLICATIONS OF MATRIX METHODS :

. ANALYSIS OF LINEAR CIRCUITS (U112)

~

2.1 Inttoduction ’ '

A

In ﬁnit 1¢;\§‘ on elzctrical circubts, we considerecf
L . how a system o ‘ﬂineag" equations }:oixld be used to o ‘o
. represent some o ;the*relationships °q'.n an electrical
circuit. Such a system of equations ig useful in ligear -
circuit analysis.* .We then explored the use of matidix
methods to ;solve sys.tems'fof xo:gua.tiohs, which,’ in some : \
casgs, were over-determined. We algo referred\to the
fact that Systems of equations cdn®be <onsistent or in-
consistent, and can \?ave,a unique soiution, an ‘i_nfinite )
number of solutions, or no sglutiof"?. W‘e-now erplofe a
. simple method to solVe such systems’.. > e

",
. 2.2 ETementary Row Ope\rations \{ 4

.‘Wé fre interested &n:t_he following three t}’pes of
. k) : >
elementary row operations which may b .perfoi'\m—ed,_ on a

: A
matrix: -

. ~

N
. v P
p 1. the interchange of any two distinct rows; . *
« &. the multiplication of any row by a n'&;nero.
! M My ¥
: - scalar; : O T .5

3. the addition of a scalar multiple of one rdw —
- ~ - ~ - '
of a matrix-to, some other, i'oy of the game -4 oy -

.

. ®
matrix. = .. ; . R

‘,
5 o®

If you think of ordinary linear equations, ythese are the
- L o
usual ways in which yYou manipulate them. . .

. <
-
LI . Z -

8 *A linear circuit for a direct current is one containing ' §
element$ ghat obey Ohm's Law, such as metallic conductors. Ohm's
- . s . Law was given as tQe third law of electrical cirtuits on page 12
v There are many devices in electronics that do not obey Ohm's Law. L
. They are ¢alled "nonlihear." A
iy . /- ’ _ ) ‘

e RIS - , ‘ ; ,
e , . ‘
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2.3 Exercisges Usjing Eléientary Row Operations

1. Which elementary row gperation transforms

- ¥

1 8

1
3
0

- =17

2, Transform

.

1

if p0551b1e../

2.4 Row Edﬁivalence ' .

A matrix is said to be rov equzva;ent to ‘another .
matrix if the f1rsf matrlx can be transformed 1nto the
second by a sequence of eleméntary TOoW operat1ons. _For
example, in‘the exercises in Sectlon 2a3 the, matrlx

18 coLe SNy 8.
.is row eguivaleﬁt to amd the matrix
2 -1} 0 -17 :

<

3 -1 ' i+ @
. 1s Trow eqﬁ;valent to L
0

1 7 . 1l. °

Why we are interested in Iow equivalence will be
eviffent,in the discussion which folloWs. - We will see
that a transformation of a matrix of coefficients of a
system of linear equat1ons which leads to a particular
row equivalent matrix is a mean’s of ‘obtaining solutions
for the system of equations, :if the§ exist, or in
determining that ‘the system is incensistent.

~
.
, .

2.5 Row Echelon Matrices T : . @

If you logk up the term-echelon 1n aod1ct40nary, you
N
*will £1nd that it refers to a~forﬁat1on, often used for

-




.

&
airplanes’or ships, in which there }s a lead plane Jr
“vessel with the others arranged in step- 11ke fashion
slightly to the right or left and to the rear We use
the term echelon here to refer to matrices of a form
that, ‘in a way, suggests the heaning of the term as jusi
‘giveﬁ. More'pre%isély, we define a matrix to be in

- row ®chelon forT if it has the following properties:

-&z in any TOp of the matrix the.first nonzero
element .at the left must be a 1 unless the
row consists of all zeros; AL

2. rows of all zeros should follow nonzero ‘rows;

3. .the column containing the leading (i:e., the
leftmost) 1 has zeros elsewhere’ in the column;

4. the leading 1 of any nonzéro Tow must appear

* s~ - .to the left of the 1ead1ng 1, of the nonzero TOW

that fodlows 1t.

The following examples should help to clarify this
idea: : *
0 ",'2—] Yo

~

»

a
.

(eéhéion.form) -

-

Q

-~

~
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2.6 Using Row Echelon Form to Solve Systems of Equations

o

For a given system of 11near equations, the
coeff1c1ents of the variables and the constant terms
‘can be represented as two matrices. Eor example:

-

2z - 3y = 36 : “

Sz + y = -3
, 2 -3 ) 6
let V = and C =
) 1 -3 ) : /;ﬂﬂ\
. If we write the matrices V and C as one matrix, by /
writing the constants as a new column on the right:

- [vuil _

and transform this augmented matr1x to echelon form, we
can’find' e solution’of the opigindl system of linear
equagions represented by V and C, if the solution exists.
Further, this method w111 expose 1ncons1stent systems,

and systems with many solutions. We will demonstrate
th1s with anaexample For the aboveosystem )

-3 |6
-3

03

5
[s.3
-3 . e

by -§,and add to row 2

JAruitoxt provided by Eic:
. e

~p
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[mc

i

_ same time applyrng the®row operations to the ‘augmented
. matr1x of coefficients and constants can producé-the®

-
s
multiply row 2 byi7 oo ,
3 * - 2
1 -3 ] 3] . )
0 > .36 -
. - N . .

t
multiply row 2 by 7 and add to row 1 to achieve row
echelon form

. ! X
3 3 N . ‘- -
1 0 |- . )
. 17| P o
36 , )
0 1 |-

The solution for this system can be read from ,the
row echelon form as

- L P .
¢ x = 'TT:
and . . .
.36
, y = -1—7.. ,ﬂ ..
From this problem we can seg that: transform1ng a

matrlx of coeff1C1ents to row echelon form, and at the

g 2N
Y
s and Exng1ses ¢

-
'

.

sqlut1on togthe system, if it’ e§;sts

2.7 Exampl

s

Use the method of transformlng the augmented matr1x to.row
echelon form to solye each of theSf systemg, if possible. State

whether or not the system is incon51stent The first, example shows

how this can be detected. ‘ o, . .
Bl 3 ! .
a. =z- y-22=3 - . / -
2+ 3y + a= ) - - . . !
- 4zt Ty - Sz:= 5 ‘ . '
- . N . < . » .
'*‘ .
- B A L e 13
Ve ° o r N S
) ’ ’ .
ks - ., . \:' - —
] ) * 80 Q -
. . »” . +
G ? /A

Te




o F - - )
The’ answer is 1 0" -1 2 -
' 1 -1 i

[ 0 -2 )

.

This system is inconsistent.

Look.at row 3’.

There is no

- value of z, y, or 3 suth that 0 = -2. -
- b, z+ Y- z='4 . -
° /-;z: - y + 2z = -§ " N
. 4z + 11y - z = 14 Toe . ’ '
>
L} D t —
% c. 3p + Zy + 2 =8 . -
2z + Sy +4z = 8
. x-+ 4y + 62 =4 v ° ® ) v 1
@ . . .
4. mry +z= 3 ’ %
- . [ % . -~ P
x-y -3= -4 . ‘
3.1:. +y +z= 2 . " . . .
. - T, 1 . ’ >
. Answer: 1 0 0 3 G
A
‘ . S U Y ; . ’ . .
e . * .
o 0o ol o - .
From the first row z = 5 and from the Second row y + z = -;—
. LY .
The third r@wxindicates that 0 = 0. This system is consistent, but
. . .
there is no unique sqlution. We can, however, find a particular
solution if we assign some value to y or 4. For Qx_amble, let z = &k,
° 5
theny = 5 - %. For'k=1,y=-2-. 3 e
& ..
In this case, the system is consistent hut- has an- mfm1te
s 3° “number of solutions. We refer to such systems as conswtent systems v
s ‘-»‘ with pardmeteérs. .Inf the ,example above k¥ is a pummeter A system ’
. may have ‘moré than one pirameter. : '
. . . . .
. D Y . . . , .
, 4 , o
3 l? . * < ) ’ o .
Pe ! v ) B . f’ -
.. ’ ) Lo 14
R PR M “\ . . A L
9 . . : « Co
Doe - _/ <. 86 ) « v '
4 '
. . / . - ’.
. . .
Q . . . . . .
. 0 '] .
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e. z-y < Dées this, syStem have a parameter? Why?
Z'c+y ’l'ie.F
% -y S
T -2y
- Yy
Yae g

g ze
_'Zx-o-y
2z +'y

L+ 3y - 2
2 - y + 22

%ﬁ 2+ =

" 2.8 Electric Circuits Revisired

In Unit 108 we used matrices to analxle an electric

circuit.’ The‘program'is quite adequate for even a large

system. However, at the time, we“started by formulating ¢

“equat1ons based on the laws of C1rcu1ts and then
constructed a matrix from this system. If a system ig
more complicated, this may be a nontrival task.

It is possible to formulate the eTEctric circuyjt
. problem in terms of matrices from the beg1nn1ng without
writing the equations. This will be 111ustrated 1n°the
following example.

[y v

2.9 An Example of an Eleétrical Circuit

o C. s
- Before we start the examplé it is necessary to
discuss, briefly; network branches and sign convent1on’.

Each branch of a netdbrk‘nn an electrical c1rcu1t can be
represented as shown'in Figure 1.

¢




Figure 1.

The voltage dr0p° across the branch is given by
r " €re where €r is an eleetromotive foree in series
with L Figurg 1 shows the sigq conventions used‘for’
a branch.

’

Figure 2 shows an example of an electrical circuit
usingu‘the conventions illustrated in Figureﬁ‘.
-
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)
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Aruitoxt provided by Eic:

the eduations*ﬁtr this circuit as .

ERIC .

' vs [

»
Each branch is connected to the rest of the network
at precisely two points, or nodes. We number these nodes

in Figure 2, arb1trar11y, “from 0 to. 4} We ate interested
that is,

differences such as V, - V. which is.dqual to v, - e,,
s o2 3 2 2

in only the voltage drop across a branchi

so'we can set the voltage at one arbitrarily selected
We choose V = 0.

node equal to 0.

the
ard we can wr1te

v -

From the. laws preV1ously stated 1n Unit 108,
net current at each node must be zero,

Iy = -ty * g+ ig

& .
L) s i+ i34y,
Ip= 4y - i3 7%
Iy= iy -ty i - Y :
° Hbwever, instead of writing th%pe equa£1ons especially

if the system is large ah& complicated,“we can construct
the matrix S which p}eserves Yhe signs o6f the system.
This matrix can be constructed directly from the diagram ¢

without the‘necessit¥ of wrifjng the equations,

Ip %1 % 73 i ‘
N
’ 0 T U R 0
) s=1, [0 L -1 0
I; Joo -1 o -1 .
L3
' 7z . M ' s
o F
.. ) ‘ N

Vet

e
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4 k) .“ » Fy
' Verify that the equations could be obtained from
’ - the produgt ~ . R B . i
¢ 4
s »
) J - S‘I- e N . , ’
. e -’ . . ) ]
s : . -
« where T .
- » . 1 ° . _
. Z, ; .
. £ .
LR 9
: - 41 . .
i .
. .o .S ’ X . . .
1 . -
_ Lol -
From the q/agram in Flgure 2,we can construct the
follw—mg—ma—t—r—rce’s. . . -
N - — .
. v e ~
1,L 1 s
. J = Y2 €2 < : '
- vy . e . ’
A . vs= e = . ?
e vy ey S
I -
) - ¥
i ‘ . LS O . 1fs! .
. .o i [
. : : : ' v e .
- SO -1 I 1
Since the law of electric circuits . .
3
. : - v = Ri - . 4{ .
- . - .
. holds for .tHe yoltage drop across each resistor in the -
circuit shown iff Figure 2, we have" ¢ , ’
=Rnn,n=1, 2, ..., 6, —
- N &:\ ’
. - . ,.
j .
N - L]
< . . ot ) . lb ~ ¢ - * -
L3 R . . . . ‘ ———r
. -
n ’"‘ S 18 .
- ' Q L3 '
- " - ® . -
4 . ‘& * . 3 ‘
. o ' ) - . ® ' t o
{ . 90 - N — - —
. ( )
¥ Q ‘ : T \ ' Lo
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) /
2
or, in matrix notation,
— - - .- ¢ '
vy - Ry 0 [\ 0 0 0 23
v, 0y R, O 0 0 0 i, * .
AL _ 0« 0 Ry 0 0 0 . i3 ‘
Vy 0 0 0 R, 0 0 . | %s
. Ve 1o 0 0 -0 Rg 0 ig &
_VQ_ _0 0 0. o 0 Rﬁ_ _i6__
» ¢ hd -
. Satisfy yourself that this equation holds.
*
All our information is now organized in the matrices )
s, z, V, J,\v', e, and R.
. . R
From the laws of electriical circuits the fo&lowing °
relationships are true: .
: . v = R¢ 2.1y P .
T T .
S'V=oyp. (2 2} where indicates the .
< transpose
J =S¢ (2.3) ’ .
, where all the vanables in Equations 2 1, 2.2, and 2.3
< represent the matrices constructed above. , !
. 2.10 Experiment I , ) " A *
. < . .
* Using Figure 3 constmict ghe matrices S and R for this
" system. - Let J = 0 and solve for V. ) R
. ' ) 3 .
y , . ;

ta

(v
|
o~




e
H R6 = 1
10
e N
l ®
. -
’
. .
) N
[ ] o » ' . .
e L 3&*@ - v
Figure 3. .. i v
' The ;/'alues for the e's not shown are all zero.
> I} - L]
. ‘ T ; .
A . ) A : ’ '
. 4 A}
2.11 Model Exanm for Unit 112 ’ i
1. Transform this matrix to row echelon form* - ——- —
P ST T T
4 1 o 1 .
¢ 1 a1 . . . ‘e
g L 4 S
S S APEE R .
: # o s ., .
. 2, Solve this system of linear equations, if possibié, v i
.o . . a .
i x- y v Bz = 2 "y .
‘e 2y e22'= 2 :
- 3z, + y + S; .=w.°4 . b .
) z+ Sy -3z =""1. g ‘
* 3. Is the system in Probjem 2 consistent? Does it have
< . .
pardmeters? ’ : <3
» r'd , * . . . ) L]
. .o .
3 ‘;_ .- . K‘ [
! 20
» - .
- ¢ ]
- Y . o 4 * .
: Ld * & ( e
Y - ' “ . \ N
» ‘ \
. 0 » 4
. N . - . oo N ¢ .

~ERIC [ S .

N . -
; Aruitoxt provided by Eic: .
. N . .
.
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ngréate the necessary matrices for the analysis of the

electrical circuit in Figure 4 such that the formula

SRi}§TV = J - SRle can be used. Do not solve the system.

ERI

LR A v 7ox: Provided by ERiC




3, ANSWERS TO MODEL EXAM (UNIT 108)

v
1.' Qver-determined.

2. Consistent, consistent, inconsistent.
3. Unique. ..
. 4. N=4,M=3! ‘ \
AUGMENTED MATRIX
oo 1,00 1.00 1.00 ~ 30.00
* * 1.00 -5.00" 0.00 0.00
) 0.00 5700 “-2.00 0.00
<, 1.00 0.00 -2.00 0.00

. . N

UNIQUE "SOLUTION VECTOR X IS

) . X(1) = 17.64 v W
X(2) = 3.52
X(3) = 8.82
3 5.° N=3, M= 4.
AUGMENTED ‘MATRIX  °
. 2.00 -1.35 3.00  1.00 1.00
1.0o0 4.00 -1.d0 2,00 4.00

5.00 '2.00 5,00 4.00 .00

EQUATIONS ARE INCONSISTENT.

.

&

4. ANSWERS TQ SOME EXERCISES FROM UNIT 112
- >

. Exercises from Section +2.3:

The multiplication of row 1 by a -2 and addition of the

Tesults to row 2 will transform
T, 1 8 1 s 8
2 -1 L v

-
> iy

22




R Low

1
aultyply row 1 l;y 3
. )

-

’ﬁultiply row 1 by -;— and

add the results to row 2

~3
s N{H‘ lN]H Nl"'l

multiply row 2 by ——
i 71
lv\ 2
LN 1
multiply row 2 by 3 and
“add the results to row 1
Fl

—— N

5. ANSWERS TO MODEL EXAM (UNIT 112)
] . . kL

v » .
The row echelon form is: ’

N

"2-3.. Us.ing Program 9 we g&t the ‘fdllbwing result:

& ]

ROW ECHELON FORM

1.0000  0.0000  2,0000 1,5000
0.0000 - §.0000 -1,0000 -0.5000
" Vg - J
0.0000 $0,0000 0.0000 "~0.00d0

I}
0.0000 %0.0000 0.0000 0.0000 N

v
.

From the row echelon form we cap see that the system is

consistent, but that it has parameters. .

Q
RIC
o

Y ~
“
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Using Program S we can find particular solutions. You
might want to discuss this result-in class,

PARTICULAR SOLUTION VECTOR IS

. X(1) = 0.00 o
X(2) = 0.24 . ' )
: . X(3) = 0.75 2
LINEAR INDEPENDENT VECTORS ARE . :
U(1) to U(1) 2 . .
-1.00- . '
, 0.50 . , . .
£ 0.9 .
* F‘_. ~— y— ¢ -
4 il .|y 0 0 0o o o
., g R
%l - © R, 0 0 0 o
P A 0p 0 Ry 0 0 o ’
= |. V= Ra= T
i 00 o0 R 0 o0
. L. |t 4
)
‘ , i 0 0 o0 o R, 0 '
‘ . . v
N ' _o 0 0o o o R6_J ‘
€
t X N . . .
g < 0 ‘0 0 o ;, 0
& '
o, - ;10 1 ofs 0 .
e 8T, % 0t 1 0 o] &= o .
. . @ 0 0 a1 1 - 0 . ’
. . » a .
B ' 2 SR
’ ) and>J = St. ) . g» o
. A ) .

- RN 2 [’ . \
[ \ *
- \
- .
I3 . “ - N
°
' . v ' -
- \ ~ A v .
: - R 24 -
. ) . ) o
d . 7 . = e
. . - 4 . I ‘- .
‘ ¢
e .. ’ '
O 1 SRS

p’ »
v ¢ e i
\) 3 . “ , . .
» D
ERIC . , SR g
. . N . / ;

.
[ . : . -




APPENDIX A

PROGRAM §

mmakmaomm .

DIMENSION AA(10,10),88(10),X(10),U(10,10)
Cawr#READ ONE LINE HEADING WITH STUDENT NAME
_ C#xxx A /4 TERMINATES THE RUN y
100 READ(2,20,END=50) HEAD- _ i

20  FORMAT(40A2)

WRITE(5,21) HEAD
21 FORMAT(TH1,5X,40A2//) .

Ca#++READ THE DIMENSIONS OF THE SYSTEM
READ(2,1C) N,M
.10 FORMAT(215) |

WRITE(S, 33) NM s
©33 FORMAT(SX,'N = ',13,5X,'M = ',13//)

WRITE(S,34)

34 FORMAT(5X'AUGMENTED MATRIX'/)
‘D01 I=1,N"
C++++READ THE COEFFICIENTS AND CONSTANTS
Ca++*THESE ARE PUNCHED IN FIVE COLUMNS EACH WITH A(DECIMAL POINT.
Cx++xCHANGE THIS PROGRAM IF THIS FORMAT IS NOT SATISFACTORY
Ca##+THIS IS A SHORT CALLING PROGRAM AND CAN BE ADJUSTED EASILY
READ(2,2) (RA(I,0),J=1,M),88(I)
2 FORMAT(11F5.0) ‘
WRITE(5,35) (AA(T,d),d= 1,M),BB(1)
35 FORMAT(5X,11F10.2)
1 CONTINUE .
CALL SOLEQ(AA,N,M,BB,X,K,U)
1F(K)100,41,42
41 WRITE(S,5)
5 FORMAT(//5X, mmwsanmmnvmmaxlsn
60 TO 36
42 WRITE(5,43)
43 FORMAT(//5X,'PARTICULAR SOLUTION VECTOR IS'/)
3 D0032I1=1M
WRITE(5,31) I, X(I) -
31 FORMAT(SX,'(X’,13,') = ' ,F8.2)
32 CONTINUE &
IF(K)100,100,40 .
WRITE(5,6)  °
FORMAT(//5X ' LINEARLY INDEPENDENT VECTORS ARE'/)
WRITE(5,7) K
FORMAT(SX u(1) TO u(* 12, ) .
DO4T1=1M
WRITE(S,3) (U(1,J), J]K)
FORMAT(5X,10F8.2)
G0 TO 100
CALL EXIT
END .

.




10 -

20
25

30

‘2

* 35

40
!
45

50
60

" Exxwxx PROGRAM 9 - APPLICATIONS OF MATRIX METHODS

DIMENSION AA(20,20), IHEAD(40) »A(20,20)
NR =2
NP =5 ’
READ(NR,10,END=60) IHEAD ’
FORMAT(40A2)
L/WRITE(NP,20) IHEAD ™
FORMAT(1H1 ,40A2//)
WRITE(NP, 25) N
FORMAT(5X 'INPUT DATA',//)
READ(NR, 30) NROW, NCOL '
FORMAT(ZIS)
WRITE(NP, 21) NROW, NCOL \ :
*,13,5X,*COLUMNS =

FORMAT (5X, ' RONS = ',13,//)

NCOL = NCOL + 1 -

DO 40 I =1,NROW .

READ(NR,35) (AA(I,Jd),J, = 1,NCOL) -

FORMAT (10F5.0) . ’ . -
WRITE(NP,45) (AA(I,J)J = 1,NCOL) <
CONTINUE )

CALL ECHEL(AA,A,NROW,NCOL) ~ .
WRITE(NP,41)

FORMAT(//SX "ROW ECHELON FORM'//) t s

DO 50 I = 1",NROW

WRITE(NP,45) (A(T,J),Jd=1,RC0L) . .

FORMAT(5X,10F10.4)

CONTINUE <
GO T0 5 .
CALL EXIT - .

END . J

v~




. 15 D0 20 I = K,NROW
-, DO 20 J = 1.NC v
IF(AK(1,0))30,20,30
20  CONTINUE
RETURN
Cxxxex+ FIND THE FIRST NONZERO COLUMN ENTRY
W 30 D0 40 9 = K,NC ;
DO 40 I = K,NROW
N IFtAK(1,J))50,40,50 .
.. 40  CONTINUE
“vw -850 IC=J ,
- IR =1 . -
. DO 553 = 1,NCOL
. C = AK(IR,J)
“AK(IR,J) = AK(K,d) .
, 55 ‘AK(&,J) = C
X (x,1c)
DO 609 = IC,NCOL
AK(K,J) = AK(K¢d)/X
60  CONTINUE® -
00- 70 I = 1,NROW .
IF(1-X) '65,70,65 . :
65 D= AK(I,IC) . .
" D0 67 3 = IC,NCOL
W= AR(K,0) *D s
AK(I,J) = AK(I,J) - ; .
LF(ABS(A{((I J)) - OOOI*ABS(N))GG 67,67
66 , AK(I,Jd) = 0.0
67 "# CONTINUE '
70; NTINUE - .
Cexxsex RETURN IF LAST ROW HAS BEEN PROCESSED.
IF(K - NROW)80,75,75 ‘
75  RETURN »
80 K=K+1 , T
‘G0 TO 15 o
END .
\
R ¢
A. v * - /
N -.v‘:‘.\ -« ‘ <
t?i'\‘r\ﬂ v
: 3
s s :
- -

SUBROUTINE ECHEL

~\}LIST ALL
ONE WORD INTEGERS
! Caxwkx RETURNS ROW ECHELON FORM OF A MATRIX.

-

C***** RETURN IF COEFFICIENT MATRIX ROWS REMAINING ARE ALL ZEROS

-

SUBROUTINE ECHEL (A,AK,NROW,NCOL)
DIMENQION A(20, 20); AK(ZO 20)
00 10 = ] »NROW

D0 10 J = 1,NcoL . i
4}(1 J) = A(1,9) :
N
= NCOL - 1

27




’

SUBROUTINE SOLEQ

*xLIST ALL 7

** NUMERICAL ANALYSIS SUBROUTINE SQLEQ
SUBROUT INE SOLEQ(AA,NI ,M,BB,X,K,U) - '
DIMENSION'AA(]O,]O),BB(]O),A(]O,H),X(lO),ID(]O),U(]O,]O)
N=NI .
MM=M+1
-D0 200 I=1N
A(1,MM)=BB(1)
D0 200 J=T',M

200 A(I,3)=AA(1,J)
K=l A

IF(N-M)15,1,1 .,
©15 IT=N+] \ -~

tmo 0w
—_
E——
I

—
-
=
-
v

1T
B=ABS(A(K,K)) A
DO 3 I=K,N )
DB 3 J=KM .
IQABS(A?I,J))—B)3,3,3] . '
3 1 -

IT=J
B=ABS(A(I,d))
3 CONTINUE
IF(1S-K)4,4,41  \
41 , DO 42 J=K,M

C=A(1s,9)
A(1S,9)=A(K,J)
42 A(K,d)=C . :
4 CONTINUE
IF(IT-K;S,S,S] ‘
51 _ IC=ID(K : C
. ID(K)=ID(IT) o,
ID(IT)=IC . ,
DO 52°1=1,N R4
C=A(LIT) * '
A(I,IT)=A(1,K) .
52 A(I,K)=C . s
5  CONTINUE .
IF(A(K,K))71,61,7
61  KK=K ) .
K=K-1
DG 62 J=KK,M
62 A(J,9)=-1
60 TO 6
71 IF(K-N)81,72,120 . o
. .
N , < ‘g




SUBROUTINE SOLEQ (Cont.)

72
8

-

A(N,MM)=A(N,MM)/A(N,N)
GO TO 7

DO 8 J=KK,MM-
A(K,9)=A(K, ) /A(K,K)

DO 8 I=KK,N

W=A (1K) +A(K,J)

A(1,0)=A(1,d)-H

1F (ABSRA(1,0))-.0001#ABS (W) )82, 8,8
A(1,9)=0.
CONTINUE
1F(K-M)22,6,120

+ K=KK *

GO TO 2 |
CONTINUE )
DO 73 I=KK,N

IF(A(1,MM))120,73,120

CONTINUE-

CONTINUE

Klsk-1" *

D091S=1,K1

1=K-1$

11=1+]

DO 9IT=II,K

DO 9J=KK, MM

A1, J)-A(I-J) AL, IT)+A(IT, J)
/CONTINUE

D010I=1,4 -,

D0109%1,M .

TF(1D(d)-1)10,117,10

X(1Y=A(J,MM)

CONTINUE

1F(K-M)101,10,101 °

DO 102 ‘IS=KK,M '

ISUB=IS-K -

U(T,ISUB)=A(J,1S)

CONTINUE -

K=M-K

RETURN  , +

R = -1

WRITE(5,1000)

. RETURN

EORMAT(27H EQUATIONS ARE INCONSISTENT)
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Intermodular Description Sheét: UMAP Units.158-161 \-\ ' 3. Know, that when x is measured in degrees :;x (sinx) =
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of the other trigonometric functions and provides practige - v . -
. in their appli.cation._ . i ‘ * -
Prerequisite Skills: . ° - . - ?
1. Know the definitions of the trigonometric functions. . <. .
2. Be familiar with radian measure for an§les. . *
3. Be acquainted with the fundamental trigonometric identities, .‘
including th{:' double anglp Faurmulas. N ) ~ ’ - /
4. Be able to draw and to recognize the graphs of simple expres- o ‘! : .
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2. Be able to estimate the valueS of the the derivatives of : . .
y = sinx or y = cos x for any given x value, where radian ‘ - J ¢
‘ "*  measure is used. ) , - . : .
Unit 160 ) - in b ’ P . M .
1. Know that -9 (sinx) "= cosx because lim s': =1 and .
cos h-1 \ h=+0 \ Yy : .
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\_72. Knowwhyli‘ms—':——=J. . ' . - 2
. : . h0 , . ) N . v \« ) 1 t )
- . ‘o S . 1979 EDC/Project UMAP
l{llc L 104 . N . . 9All Rights Reéerved.




- X .
r * *+  MODULES AND MONOGRAPHS Iii UNDERGRADUATE R S ’ s . . » . . N
HATHEMATICS AND ITS APPLICATIONS PROJECT_ {UMAP) ' ' "UNIT®158: CHALLENGE PROBLEMS

The, goal of UMAP Is to develop, through a conmuni.ty’of ‘users ’ v
and developers, a system of instructional modules in unde?t_rraduate ' - - ' — 4
mathematics and its applications which may be used to supplement . . . .
~existing courses: and from which complete courses may evgrtually be . 1. CHALLENGE PROBLEMS . . D |
bullt. ) - oy ¢ ’

The Projecf, is guided by a, National Steering Committee of " * t; 1 Itnt'roduction * ' . / 1
mathematicians, scientists and educators. UMAP is funded by a . : S I
grant from the National Science Foundation to [Education ‘Deve lopment B -~
Center, Inc., a publicly™supported, nonprofit corporatiion engaged ~| . . .
in educational research in the U.S. and abroad. ° ’ 1.2, ?Ut Fishing . . R T
PROJECT STAFF , ] ' - R

. . . -
Ross 'L Finney Director e 1.3 Pgtter/G.utters T 2
Solomon Garfunkel ' Associate Director/Consortium . -
° Coordinatqr < .
Felicia DeMay ©  Associate Director for Administration S 1.4 Average Power . . . . . . . . . e “. . 3.‘
Barbara Kelczewski~ Coordinatqr for Materials Production | __ -« . ; N
Edwina Michener - . Editorial Consultant ) . o
Dianne Lally Project Secretary |, ..l e ' 1.5 Pulling a 'Box P )
.Paula M. Saptillo A - Administrative Assistant i . g ,
Carol Forray . Production Assistant . Al 8
Zachary Zevitas- Order Processor .- - 2., MODEL EXAM . . L
. - s N - ~
NATIONAL STEERING COMMITTEE e < ) : -
4 » . . . . -
W.T. Martin MIT (Chairman) o 3. ANSWERS TO MODI{L EXAM .~ . . ., e e e g .‘ .9
Steven J. Brams New York University - 7, . -
Llayron Clarkson Texas Southern Unijversity ‘ . -
, Ernest J. Henley -, University of Houston > e L0,
Donald A. Larson * “ ‘%~ SUNY at Buffalo .
William F. Lucas ] Corneltl Univérsjty ]
R. Duncan Luce Harvard Universtiy, e 7 . ) . -
George ‘Miller Nassau Community (Cgjlege ' , r.
Frederick Hosteller Harvard University ST . P . ) . v
Walter E. Sears ) University of Michigan Press - A o, ©
George Springer . indiana University > S N T s L ‘.
Arnold A. Strassenburg_ SUNY at Stony Brook - ‘ oy ' > .
Alfred B. Willcox Mathematical Assbci'ation of America . . <

The Project woql'd like to tha;k members of the UpAP geer-. - : < ¢ .
review system for their reviews and all others who asSisted in the | . p
proquction of this unit. - . Tt R -

> This material was prepared with the support of National v ct - . T
Science koundation Grant No. SED76-19615 A02. Recommendations : . . .*°
expressed are those of the author and do not necessarily reflegt . . . .
the views of the NSF, or of the Nat‘io‘nal Steer'ing Committee. . - s

- } . . ’ L . N -I/J
3 4 A .

l: lC T " ) . ) )
= * * - - 1 d
.
—— - ks o
K - a N N .
o . . .- ' ( .
- 7 Ty T ‘. . - N : A




O

ERIC

M A v 7ext Provided by R

e e

' 108

=

CHALLENGE PROBLEMS

- 1.1 .Introduction

. You have used calculus to solve problems that wéuld
have been either impossible or much more difficult )
"'witholit calculus., In-the problems posed here you will
find that calculus will-lead to the soluEion, but

ghat' calculus nust be applied to trigonometric functions.

Read ‘through each problem carefully. Decide
Nwhich concepts and procedures from calculus are needed
to solve eaéﬁiyroblem. Then, af;er your s‘tudy of
diffqrenpigtibn and integration-applied to trigono-
metric functions in'Unit 159 - Unit 161, you should
be gble to find the Solutions to the problems.

4

1.2 Out Fishing K -

AN

@

Jack Jukes is out fishing on a spring.afternoon.
First, there is no wind and his cork is perfectly
still in the water. later in the aftérnoon a wind

comes up causing the cork to bob ug,and down.
- “ . ‘
From his physics course of the previous semester

Jack knows that the vertical positian of the cork

plotted as a function ‘of time will be a sine curve. ’k

The gribh-of the position of Jack's cork with respect
7 ’ .y

to time is shown in Figure 1. L

tNote: If there were no wind, the positipon of
,the cork would remain s%ationgry at y'# 0" a5 t increased.
Also, t = 0 is exactly 2:00:00 p.m.) With all this
information magically at his disposal Jack asks him-
se{f, "What is the ﬁosition of my cork and how fast
is its position changing at % second and at 1% seconds
after 2:00:00 p.m.? Also, at what poinf during the
first 2 seconds is my cork fallinrg fastest?" (

14

4 4
3-
2 4
1 -
0

-]-
_2_
_3_.
-4 o

" Figure 1. Graph of the position of Jack's cork.

1.3 Putter Gutters

The Putter Gutter Company is planning té make gutters °
from 14-inch strips of galvanized steel. They are to be
designed as shown in Figure 2.

*II

| [

(8 - x)ll

Figure 2. Section of gutter.
L

4
‘s illustrated, one inch on the outside edge will be
used for the lié and one inch on the inside edge will be
used for secu;ing the gutter to a building. It is abso
desired that the total length of the side aéains; the
building be five inches and that the bottom be perpendicular
to the side against the building as shown. The- final

103




s M i= — 1 =10 Sinllrz-t.
Now the equation for power is ' .
oo ) = (170 sin q5 t) (10 sifi gy t),
‘where p is in watts. < .
170 o . ‘ . P -
1(volts) ’ . . .
. 180 4 ) ,
.
. 0“1 \ =
. 6
% -1004, .
‘ « f )
..]70:'\ .
! = 1 Y 3
o Figure 3:;" Graph of v = 170 sin 3t y R
* - 14

’ R , U158

gonsaderatlon is tg design the gutter such that it W111
thold the most water sible when filled to a depth of
yfour inches. The qué§f1ons that need tq be answered are,
“Where should the behd between the botyom and outer side
be?'" and "What will the angle that the outer side 15 to

be bent up (angle 8 in‘ the 111ustrat1on) ‘be?" P

’ v

- 1.4~ Average Power \l

Electrical power, measured in watts, is the product
of the impressed voltage and the resulting’ current in
We have o ’ ‘
pwatts) .=

, When re51stance is measurei

amperes~

v(velts) x i(amperes).

3

4 in ohms, we also have

1(amperes) = !é%%%ﬁ§§sl S v

When the voltage for alternatlng current (AC) is
graphed, w1th respeé% to time, the result is a sine curve.
Suppose AC voltage is given by the equation, -

.t v = 17{)sin-1—"2-t,‘ . ’

. N
where t is in microseconds, *® ¢
PO ,

Also, suppose the resistgnce in a circuit is 17 ohms,
. . . N
then - *

v .

170 sin-f—'z-t' .

. . ) . .
N . 0
o A O [ v .
- S ~

¢ i

-

°

10—‘ (amperes) N s
‘5
— @ L
0 }
6

o

1 3 .

5 ©

>
~10 ~ -
Figure 4. Graph q’i = 10sin 152 t.

“ /
17005 P (power) - )
1500 + "'

u
i a* ) .

. L4 .

1000 ’ .
" 3

) ” 4

500 - .
‘ ' b

o
Y % T % — t
: 6 , 12 o 8 24 (micro sec)
Figure 5. Graph of p = 1700sin? IE t. ] ’
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The average power P, where p 1s a per10d1c function
of time t with period T,

.

is def125d as follews

p dt. Tt ~

° N .
L] s -

. §. AR
What is 'the average power whete p = 1700 sin?/12 t?

What is the geometric interpretation of P?

T
(average power) ?_ P = %J
) 0

s

1.5 Pulling a Box

- ~

Jason Baxter and Sam Jones are haGing ;n aﬁgument
concterning pdlling a heavy box across a long room. -~
They have a rope tied to the box and Sam says, "We S
sho?ld pull parallel ‘to the floor.".’ Jason.says
"It is better to pull at an angle." .

45 Kg
. 1 Box

AN NNNANN

Figure 6a.™

45 Kg
« Box

ANARNNN

Figure 6b." j::%b's Proposal.

S e

Sam's Proposali

,

J Figure 6. Proposed pulling angles.
You are called in to settle’the‘argument. You begin
by recalling your recent phys1cs course. First, you ’

recall "coefficient of fr1ct1on ’ Fr1ct10n br resistance

varies for~different surfaces. If it requires a force of

.magnitude F kg directed paralled to a horizontal surface °'

to pull an object of weight‘Wkgsfeadily across the sur-

face, then the coefficient of friction K is the ratio.of
F to W. That is, . v
._ F _— .
. K= W .

For example, if a horizontal force o{ 6 kg will move .

a box weighing 45kg steadily across the floor, then the
coeff1c1ent of friction between the box and the floor is

4

.

. 112

_ 6K _ " 4
) K = 531%5 = .133.
1 .
' A,
o W= 45 Kg F=6Kg ' ’
-
. | g

Figure 7.
*

v

. . In considering th%\pyoblem you apsume the weight
. 1is concentrated in a single point and Jhen the force
is applied to an angle 8 as suggested by Jason,

. Figure 8 illustrates the situation. ,

. N ~

oS *

N B

Fsin®

Y

Ve - Iw (weight)
-~

.

. Figure 8. Magnitudes of forces acting on box.

~

"In this case, the upward component of the applied
“force nullifies par¢ of the downward force-of the box,

+ giving (W - Fsin®) as our replacement for W in deter- _

mining the coefficient of friction.
-~ of the applied forck parallel to the floor is given

~

. by Fcos ®, ¢his is our replacement for F to determine

113/

/ .
The coefficient of friction is K = 1%; = 0.133.

Since the magnitude

ulss

-

4

U L
- . -

e




U158,
i:i coefficient of frict}on. Thus, the coefficient of
iction is

Ty
F cos 8

K= §g—rsms -

+Solving this equation for F we obtain

O

E

Aruitoxt provided by Eic:
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KW

. L E— ~
Ksin#8 +cosekg

F

- Non”?Buerroblem is to find the value of §
that minimizes F, and resolve the argument.

’ -

. é& : « .
A - , T > Vi

: J °

2. MODEL EXAM

U158

* Read each of the ﬁoldowing,ﬁroblemé carefully
and decide whether calculus is needed to solve them.

> .

N 1. The angle of elevation of the top of a television '
tower from a point 1200 meters away 1s 0. 3 radians.

What 1s the height of the tower?

that the resultant so
yibration has a voltageQ(V) given by

2. Suppose d from guitar
strings
sin

v = 2t - 2sin (t + g-). What is the maximum

where 0 < t < g?

that a 14" (diameter) pizza is cut

voltage
r

3. Suppose
through the center in such-a way that a parti-
cular piece forms an angle measuring 120°.

. What 1s the area of this.piece of pizza?

4. Suppose that owners of a store want to put a .
trjangular sign on top of their building which

is er 6 meters long. They want the sigﬁ to be
an 1sosceles triangle and have 6 meters of molding
to put around the 2 sides that AT above the
building. What should @, the measure .of the

- , base angles, be to get a triangle of maximum

area?

Im

+

building
. Ly
5. Describe./a problem that involves the calculus

" >

{

of trigonometric functions.,
) .

_«géﬁéﬁﬁ

4

.
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, ' 1 . g 1., ITANGENT. METHOD APPLIED TO y = sin x- AND y = cos X
UNIT 159: FORMULATING CONJECTURES ABOUT THE , ) ¢ o . ¢ |
DERIVATIVES OF y =.sinx AND y = cosx 1.1 Tangents to y = sin x *+ | D N ' .
: ) . . You may be familiar‘with the so-called Tangent ' ‘
TANGENT METHOD APPLIED TO y = sinx AND = - Mgthod for measuring the slope of-a line graphed in a , J‘
'y = cosx . . R coordinate plane*. In this unit, we are going to use
— . . the method to measure the slopes of lines that are tangent
1.1 Tangfents toy = sinx t PR N to the curve y = sinx at various values of x. This will .
1.2 Graphing the Derivative of y = sin X ~C 3 give us numerical information about™the ‘instantaneous rate
1.3 «Making a Guess . . . . . . . _’. R of thange 6f thé Ffunction at t‘hese values of 'x. ¢
\ . N . . A
1.4. Tdngents to y = cosx. . ;,. N B We recall from trigonometry that y =-sin x, where. . |
. oo . y is the sine of the angle .whose radian measure is x, o
. . . = . < < -
1.5 . G‘raphlng the Derivative of y S oCoBX 4 is a periodic functlon with'a period of 2n. It Q‘then -
‘1.6 -Guessing Again . . . . . . . . . . . .1 ... & seems reasonable to consider x values such that . -
Coe - : 0 <x <"Z11 ‘Let us try to pick x values at approxi-
NUMER FCALLY CA!‘CULATING DERIVATIVES'FOR mately . 5 un1t ;ntervals, recalling that the X values .
'y = sinx \AND y = cosx Tt Tt T et e - 7 of 0, n/2, n, 3n/2, and 271 are of special signific3nce
2.1 Introduction % . . . . .. . . .. . . ... PR 1n graphlng tr1gonometr1c functions. With these ’
2.2 The Procedure Expiained L o 7 : cons1derat10ns we chose th xhv 1ue§ that appear in
s . “ . Table '1. 5.
2.3 Applying the Procedure . . . . . . . . . .. . 8 X . )
. ) . : ’ -, . Notice in Figure 1 which is the graph of y = sin x
2.4 ‘,’s“‘g Degree Measu're Tttt e e e w1l * that, eath small subdivision represents 0.1 umit and that —_—
MODEL EXAM . . . . . . v & v v v o6 each ‘large subdivision represegts one.unit. It is .
. . : . instructive to use a common Teference point to.compare . .
ANSWERS TO MODEL EXAM . . . . .. .o 1T the slope of the tangent line to see hdéw the slope . .* .
'S o . . . . * chang'é"s as x increases’ Slide your triangle along _' .
i ‘ . '_ your stat1onary ruler (procedure is expldined‘in s
\ ; .= . Appendlx 1) to translate from thr tangent to the
. L. . . curve to a paralleltllne through the. p01nt labeled
’ ’ * e -, “A to compute’ the value of the tangent for the x values
’ ) . ‘ ) : ) ) N . ‘
. L . . . . \
« o e 2 . -
Vo 118 ) A .
N Y - *
. See Appendix 1 1 .
) : 4 PP )
. - . 1
. * .
» - J -~ . -
0 ? pe " \

| .
S o 17 |
~ .
“ : - : 11
. . ‘ R
, |




. , . U159
' [ . of 0, 0.5; 1, n/2, 2, 2,5, camd 7. Use the séme procedure
~to translate from the tangeng dine to a parallel line

throygh the point labeled B to compute the value of the

tangent for x values of 3$7 4.2, 3u/2 5.2, 5.7,
= 2m, Record your values to nearest O, 05 unit.

] . Al
a ' . The work for x = 0 is done fér you. Line £ is
0.
Lint m intersects the-vertical -
1 unit to the right of point A, .

Slope of
tangent to
y = sinx

Y

and

* TABLE I

/2
*3n/2

tangent to y = sin _x-at'x = Line ﬁ’?;zgarallel to
£ and contains point A.
at-pofht .

one unit above the horizontal line through )

A, the slope of the tangent line is 1/14or 1.

i ) Note: Although ?ﬁt
at x = 0 is drawn in f

advisable not to draw in other tangents.

. liney which is

P. /Since P is

tangent line £ to the’curve
it i3
The many

illustrative purposes,

lines may cause confusion. ’

. 4
. 1.2 .Graphing Derivative of y = sin x

. . RN

. After tomé&eting Table I we will plot the points '
with coordinates (x,y) where each x is an x value from
the table
the slope

and the y value corresponding to each x is
of the tangent to y = Plot these -
. points on the coordinate system provided in Figure 2.

sin x..

Graph of y = sinx.

t
" P

1]
For x=0 the slope
.of, the tangent is 1.

»

~l o

Figure t.

v

'

*

. . T?e first

:z

point plotted will have coordinates (0, 1) 0t

‘?Q’"

)

3 g plotted thé th1rteen points using Table I,

sketch a
theselpoints.
the rate of change iny =

N

1.3 Making a Guess

Let us hypothesize that this curve%%ﬁ also the .
graph of a tr1gonometr1tqfunct1on of x

asked,
y = f(x) whose graph this:

oth curve through (or very close to) all
Thé curve we.now have is‘the graph of .

sin x. E N P
/&* ". -

3
\

s

Yqu are now

yWhat is the tr1gonometr1c function of form

curve most closely approxi- -

mates?" You may wish to refer to any trigonometry book*
hand? to refresh your memory about the graphs of

tr1gonometr1c functions. ’
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. v

>
-

T My guess is

v .

.

Before proceeding further refer to page 13,

Hopéfully, your table and grap
those on page 13 and youcguessed th

.

'\159 )

?closely anproxmated ’

trigonometric

function that was given. If you missed some values by *

< ¥
0:2 or more it is advisable to review the procedure in

Appendix 1, and try to do the exercise again.
/

i

1.4 Tanﬁénts to y = cos X ’

N
- * b

Let us use the Tangent Method again to/see if we »r
Tan guess the function of x hich”reprasents the rate
of change of_w’= * Usef the proce
for y = sin x to complete Table

is again 111ustratéd’for x = 0.

cos X. ure ybu used

11 ijS ge 6ﬁ The work

Graphing the Derivative of y

1.5

~+ -« With Table 11 complete we will plot the thirteen
points with coordinates (x,

=1 CO0S X 3
\

y)} where each x is ah X
value. from the table and the y value correspond1ng to's
each- x value is the ,slope of the line tangent to Y
Yy = ¢os x. Use the coordinate axes (Figure 3)° on. i}ageg

to plot these points and sketch the curve.

Il Id

1.6 Guessing Again

" The question is again, "What is the trigomometric

nction of the form y = f(x) whose graph this curv

most closely approximates?”

)
N] .
. My guess is ° ) : .. . .
. e Ve ,
8 Refer to page 14 before proceeding. ..
. . .y =) \‘
[ ? . ’ .
120 - '
L :
Q 2 £

»’

!

+1

-1

Graph of the derivative of y = sinx.

prez.

2n

5.2

S

i o
Flayre 3

o>

Graplt of the derivative of y = ‘cos x .

»

-~
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Slope of
tangent to.
y = cos X

U1s9

P
TABLE II

¢

X

n/2
31/2

.

'Grapﬁ of vy = cosx .

Figure 4.

5.7
2w

' U159
“2.  NUMERICALLY CALCULATING DERIVATIVES FOR
"y = sin x AND y = cos x

\] H

Z.L::Introduction -

In"Section 1 we‘:;ed the Tangent Method of Appendix
1 to approximate the instantaneous rate of change of
y = sin x and y = cos x for various values of x. .Then
for each function we plotted points P(x,y) where the
y value was the instantaneous rate of change of the
origlpal function flor the given x value. Next, we
sketched a smooth curve determined by the points for
each of the original‘functions; Recognizing that this
curvg.representéd a fungtion in each case, we guessed
an equation for this function. As you know, this new
aerived function is called the derivative of the ori-
ginal function. Thus, we are led to guess that the
derivative of y = sin x is y & cos x (Notation: .
dy/dx = cosex when y = sin x) and the derivative of
x]= cos x is y 2 -sin x (Notation: dy/dx =.sin x
ﬁhen y = cos x).

| Now that we have formulas for the derivatives
“that may be correct, let us check further using
numerical calculatidns.* For each function, let
us numerically calculate thé average rate of change
over various interval; with a fix€d x value (call
. it xl) as one end point and numérically approximate
the value of the derivative at Xy by letting the
lengths of the intervals approach zero.

2.2+ The Procedure Explained

Again, consider y = sin x, where y is the sine
of the angle whose radian measure is x, and approximate
the, value of the derivative.at x = il. Qur intervals

'

*
See Appendix 2.
~
. - \
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along the x-axis will ‘have x1 as one end point and X, *+ A&
as the otHer end p01nt We’want to calculate the ratio

of the change in y to the change in X as we éove from

P1 to PZ where P has coordlnates (x sin % ) “and P

has coordinates (xz,yz) where X

2
2 .5 * Ax and

Y, = sin(xy + Ax). ~Now, the change Imx is Ax and the
change in y is Ay = sin(x1 + AXx) - sin x. '

'We will first choosé positive values for Ax (Refer
'to-Figure 5) and p1ck them so that each successive
choice is closer to zero than the preceding one. We
will then choose negative values for Ax (refer to
Figure 7) again picking them so that each successive
choice is closer to zero than the preceding one. By .

.observing Flgur%s 6 and 8 we see that- in either case
q;/Ax should approach the value of the derivative at
the point, whefe x = X;. In this way we will get a
decimal approximation of the value of the derivative
of y = sin x at x = X)- We will then find the value
of cos kl and if the approximation is close to the
value of cos X, we will have further reason to “believe

that our formula is correct.
<%

e

B

2.3 ‘Applying ‘the Procedure [
€ &

We will now use the procedure just discussed to-
approximaté the value of the derivative of y = sin x
at x = 0.5. .Figures 5 through 8 illustrate the material
* just discussed.

- °

k We will give 0.8776 as our approximation since we

‘get this value as we.approach for both the left and
right. We find on our scientific_Ealculator that
correct to - four decimal plages, cos .5 = 0.8776. Thus
we have furtherhreason to believe that dy/dx = cos x

when y = sin x. ,
L ' “
. Next, we consider y = cos x’and estimate the
dgrivatives at x = m/3. +1In recording values in the
. . : .
124, - ' . -8

O ’ .

L~ .
) . . . .
. . N | .
o N N .

ret

.

y bz(xz,yz)
+sin (.5 + Ax)
by
sih (.5) " gL 2
. i
|
! i
R | i
| | ,
! |
. Xl=.5 ,X2=-5+AX

Figurehs.’ Ax is positive.

,
‘o

" 1sin (.5
. ‘" ) Pl (x«l ,YI)
sin ((5+AxX) :
s . Ay
) Ax
. 'P (xz,yz) |
I, 1
} 1 1
Y e
X =, 5+Ax X =5

1

, Fidure 7. Ax is negative.

e = - o ——

. U159

e -

| 4= oo o e w e

5

x
—_

Xp= - 5+hx

Figure 6. Posifive values of
Ax approach "zero.

1
1
|
|
t

x2= 5+Ax * X

|
I
i
|
|
1
!
t
!
1
1
LJ
=

5

Figure ‘8. Neqative values of
Ax approach zero.

A

OQur table to approximate the value of the

derivative -follows.

e
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’ y o TABLE III . .
- Appipximatlng the derivative of y = sin x at x = 0.5'.
% . 2
. Ax Ay = sin(0.5 + Ax) ! sin 0.5%| Ay/6x
. . 0.1 " To0.08521 0.8521
.01 .0087%1 .8751
- . <.001 .0008773 8773
: v .0001 .0000877¢ .8776
e -1 . . =.09001, .9001
-.01 -.008800 .8800
-.001 -.0008778 .8778
’ -.0001 - -.00008776 ° .8776
‘ y éolumn we list.four decimal places plus the number of
décimal places in Ax. In the Ay/Ax column we will record
four decimal places.
«Exercises * -
- - -1 You should complete Table 1V and the.Sentence following
. the table.
4 o 3
o C ) TABLE IV
’ » Approximating the derlvat?ye of y = cos x at x = /3
. : ) S
' Ax Ay = cos{®/3 + Ax) =~ cos(n/3) Ay/hx
001 -0.8896 -0.8896
- .01 -0..008685 -0.8685
N .001 ) -
. 0001 -
' T -0 0.083%6 . -0.8396
-0.01 008635 -0.8635
-0.001 - N
| -0.0001
ot . With outr-approximation of we find that -sin(n/3) = °
-“ d
o Rt . 10

FullToxt Provided by ERIC. .
. . .
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2. Use this numeric¢al method to estimate the derivative of

y = cos x and x = 2. Compare the result with the value

of cos 2.

-~

Ax

Ay = sin(x + Ax) - sin x

Ay/bx

b o o e e e e e e

o®

1

E)

U159

3. Again, use ‘bis numerical method to estimate the derivative

"of y = cos x at X = n/6. Compare the result with tMf value

e

of - sin 7/6.

’

.

N

Ax

Ay =

cos(n/6 + Bx) - cos /6

Ay/Ax

-~

~é

2.4 Using Degree Measure /
M Q

" You may check your results to_ Exercises 1, 2, and 3 T

with those on

page 12.

You now may be reasonably
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convinced that we have chosen the correct formulas. In fact, in Upit 166 we prove tha% dy/dx = cos x when

Inall these calculations and in the work in Unit ) " «y§ sin x and x is the radlan measure of the angle. .

. The problem raised by measur1ng the angte in degrees
glven its radian'measures . ] ) . ¢ has yet to be resolved. - A\

we were evaluatlng\the sine or, c051ne of an angle

- t N . J
. Let us consider y = sin x where we are evaluat1ng

the sine of the angle whose degree measure.is Xx., . SO \ f
7 y .
Now, we will use the same procedure to approximate - . -
]
the derivative of y = sin ,x at x = 35. This time we ’ ‘
~will take the sine of the angle whose degree measure - ' had :

is x. The results appear- in Table V. L. o - ’

TABLEV ‘
Trying to app:oximatewihe-derivative of . \
- . y = sin x at x = 35 ufi?‘rg degree mfasure . . f
. . -‘ . £ .
Ax Ay = sin(35° + Ax) - sin 35° ay/ax T ' < M

0.0692 . 0.0138 : : \

.0420 o ' .0140 ! ) ' -
. .0142 . .0142
.1 .00143
.01 . .000143 . .0143

>3t

4

-0.1 .00143 . .0143 7
. /G & ,

-.01 .000143 : .0143 b

-

Thus,. our approximation to thegherivative of y = sim x?

and x = 35° is 0.0143. The value of coé 35° = 0.8917. o ' .
This is not‘at all. close to what we may have expected .

from our bork in Sectlon 1. In try1ng to salvage some- ’ .

thirg we recall that all the prev1ous work used rad1an . ) . g

measure, Maybe we should have stayed with radian measure, ] Y o ’ . .

- F ' i . a -
< N 128 : ’i ‘ . , : )\QZEB' ™ "
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TABLE 1A

-Slope of
tangent to
y = 5inX

Figure 2a. Graph of thé derlvatl;e of y = sinx.
Your values\in Table T should be 6lo§e
to those listed pere in Table IA and your
graph in Eigure-Zwshould'be.simflar to
Figure 2a above. ‘ ' : v
. The curve graphed in Figure 2a looks )
:like the graph of y = cosx. Was that your
guess? ) Y

TABLE 11A
Slope of

tangent to
Y= CosX

Figure 3a. Graph of derivative of y = cos x-.

~

. .

You should ckeck your entries in
‘Table II with those listed in~Table IIA
at the right. Your eﬁtries should be
close to these. Your ‘graph in Figure 3
should) look like Figure 3a above.

/

»

-




., . 3. MODEL ‘EXAM N .
-
. e - L4 > -+
1.» Based upon the results of your graphical work and 5
numerical calculat1ons, complete the following
‘ statements' 4 “
a. a; (sin x) = - e ! i
~b."‘d (cos x) ~ . .
dx e SR -
- o R LY . - X
2. Complete the following statements. LIn determ1n1ng
the derivative of y = sin x graph1c5piy, the y vaIUQ .
: was the sine of the angle whose s RS e
measure was Xx. . ' - =T
. N 7,
’ 3., Is it important to use a particular unit of measure ¢
for angles to get the results that you listed in T
e ~answering problem 17 . ,
i 4. From the graph belew, determine geometrically the '.
. value (to nearest tenth) of the derivative of
Y = cosux at x; = .8 and at X, = 2 (radians). .
) ¥ - ;
A ‘ ) a "
Y = ? '
B +1 - . M
- ¢ :
; ) \.
(3
6 o = .
. N S X
~
- - _‘E/’.'\ . . ‘,'
Q /"N -
-1 J
» ! st

:*ERIC

PO A 1 7o Provided by exic

a. A®x=1qQ 8, the value of 3— cos x is appioxi- '

cmately _\ - -~ L4 .
St PY S »
o 16
N -

v'oe . ,
/ -
N _ U159
b. At x = 2, the value of é% Cos X is approxi-
mately ) . . -

Complete the headlngs, then ,use a sc1ent1f1c
calculator to:complete the following table from

‘which you will aprpoximate the value of the

derivative of y = sin x at x = 0.4 radians.

Ax Ay =

.
 oeee . \/f{ v -
. . h

s ~

The value of the derivative y = sig X at x = .4

is appnoximaf%ly .t

u
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- UNIT 160:

VERIFYING CONJECTURES ABOUT THE DERIVATIVES

sinx AND y =

o OF y =

1. PROVING THE FORMULA FOR THE DERIVATIVE

"OFy =sinx. ., . . . . .. ..

Applying the Definition of Derivative . ..

1.2 Some Numerical Calculations

v .1.3 PYoof «that 1lim SRR -
h-+0
i 1
.1 Proof that 1im SR -1 .o . .
h-0
1.5 Conclusion . . .
2, DERIVATIVE OF y = coSX . . v . & v v v v « .
7 -1 Introduction . . . . . . . . .. .. ..
2.2 Proof .. . . . . . .. e e e
%’_ @

3. WHEN DEGREE 'MEASURE IS USED . . . . . . R

s+ 3.1 Geometric Con51derat1on .
’ 3.2 Obtaining a Formula When~the Angle is
. . Measured in Degrees . . . A
3¢3 *Reconsidefations
~ 4. PRACTICE PROBLEMS INVOLVING sin u and cos u .
4.1 Fipding Derivatives
4.2 Finding Antiderivatives

LY

5. CHALLENGE PROBLEMS REVISITED

3]

5.1 Introduction to Solutions' e e e e e e
~ .2 Out Fishing Agaim . . . . .'v . . . ..
Z.S Maximum Putter, Gutter . . . . ... )
5.4 Average Power Computed . . . . .
5.5 ‘Pu}ling a Box Correctly

6. MODEL EXAM . . . . . . . . . .. .. ....4,
7. ANSWERS,TO EXERCISES . . . . . . .
8. ANSHERS T% MODEL EXAM .

4

+ ERI

PA Fuiitext provided by ERiC

cos x AND APPLYING THE RESULTS

.10

.10
.11

.12

.12
.13
.14
.15
.17
.19

.20

’Upon collecting the sin x terms and writing as a sum,

U160 -

2 R R -

Sin X

1. PROVING. THE FORMULA FOR THE DERIVATIVE OF y =

1.1

Applying the Definition of Derivative

Let us fow try to prove our conjecture that”
d -
ax sin x =

cos x where radian measure of angles is
We begin by applying the defimition of derivative
where the Ax used in previous work is replaced by h.

used.

We must show that for arbltrary X,

( + -
lim sin(x :) sin x cos X.
h+o »

. . .
sin a cos b 4‘5 a sin b,

-

Now, using sin(a + ?P =

sin(x + h) - sin x

lim
h+o . h
becomes B
» sin x cos h + cos sin h - sin x
lim c : X sin )
h+o -

we have B . .
-

lim sin x(cos h - 1) + €os x(sin h)
b h h :

. <
Applying laws for limits and keeping in mind that
x is fixed, we rewrite the previous expression as”

(cos h - 1) + Tos x 1im Sin h ) ‘

sin x 1im
h=+o h+, ~—

-,

In order for our conjecture to hold u¥, the first limit
must be zero and the second limit must be one.

1.2 Some Numerical Calculations

v

Before undertaking attempts at gproof,, let us use

a hand ‘calculator to compute values of these expressions
\ -~
- .1
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}fbr h values, close to :zero. Complete the following It is clear that for this acute angle we have ..
tab}e remembenng we. are uszng radian mé;asw.’xre for Area AOPQ < Area Sector OPR < Areh AORS. -~
‘angles, R A S ; - \ Y

IR ) . "TABLE I D x . " gy : / '
s Consid.ering sinh  gcosh =1 ¢ cnall values of h R ) S .
M . .. h . h, s - @ ’ “*
“% | sin n simh | oo Cosh -1 a P(cosh, sinh)
‘ . O
- .2 . - .
.1 . v * 3
.05 " ¢ . . .
T- "‘01 < . 1]
=27 e . 0 a(cos h,0) R(,0) ¢ X
.05 N . , N o * Figure 1. Considering £ROS with radian measure h.
* 9 N N ~
-.01 ’ ' ) :
N ¢ Since OP = 1, we find that Q has coordinates
* . ) e ; . (cos h,0) and P has coordinates (cos h, $in h) directly

The values just recorded'should lead us to believe from the definitions of sin h and cos h. Thus
that .o Area AOPQ = ())(base) (height) = (¥)cos h sin h.

' tam SRR Lo o, . Next, from '

: lim === %""‘mu@ . g ) . . :

. ' . - Area of Sector _ Rdn measure of angle of sector
and | ] - - . Area of Circle .. - 2
\ . 'limc°5h'71=0‘ . e s o " . ) we have ’." . . .
, hro "ame T i s , - Area0 PR _h . LT
-as we had hoped. ‘- o . ‘ .’ : y ; T - 12 2 . ) .
73 i AOSR find RS.
1.3 Proof that 1im sin h _ 1 “ o . Now, in order to find Area SR we need too in
. h+o h . . . Since AOPQ = AOSR,: we have . . . .
s ° = : - . .
We will now attempt to prove that . .- RS _ : *
- SR ST N el TR
. . 1ip.Sin b _ 4 , . o So .
. h+o - co ‘ e - .
- ) s . - . - . Area AOSR = (%) (base) (height)
Let. us consider LZROS in standard position in Figure 1. S . 1y ¢sin h . .
o L . . ) s : —(%)()(EES—};)- U .

._ LT 136 T




..

Substituting in our inequality involving these two °
trianglgs and the sector, we have : .
. . ,
(¥)cos h sin h < < L .

MuItiply%ng by ET%—E% which is positive since h is
positive, we obtain

cos h < h < 1
sin h cos h °

Next, we use the’fact that where a,b;b,d are all
positive, % < % if % > g. Using this on each half
of the compound inequality:just obtained we get

1 N sin h

craddee sl

-

Now,
lin —t—r = 1 =1 '
h cos 1
-+ 0
and
lim cos h =1 .
h+o* )
S0 R
. 1im 21D h
- »hio‘ ,
sin

. h . . 1
mist be 1 since is sandwiched between Sos |

and cos h.
Now, we need to show that
1ip SEh
h+o

L
To do this let h = -t, where t > 0. With this sub-
stitution we ‘have

. “sin x _ .. sin (-t
- lim sinx . lim l?t .
X0 t+o .

Recalling that sin (-t) = -sin t, we get

U160

4 U160

1im S8 o ggp zsin t gy, sine g
t-+0 , t0 -t t0 t

»

,
-

.Thus

iim sin h 1’

h+o . !
and combining this with the proof for h+o, we have
proven that

]jim sin h =1 &
h+o ’ ) -

wher! radian measure of angles is used. *
- 3

cos h -1

1.4 Proof that 1lim =0
: h+o R
We will now. try to show that
1im oS B -1
h+o0

using our last result. Knowing that -sinh = cos?h-1
we will multiply to “obtain an equivalent fraction with
cos?h - 1 as numerator.’ &ms.

cos’h + 1 (cos h + 1)

iiT ., .h " (cos h + 1)
. 1: _costh - 1 N -sinZh
T M Blcos B - D) M Rfeos b - 17
= 1ip Sin h -sin h
‘ UM R R{es B - D)
= rip $33 R g5, _-sin h
ho ho cos -1
- LT ' -sin h» _
=0 iiT Cosh-1 -0
1.5 Conclusion ; -

Recall that in Section 1.1’we found that

. 4 N
o 137 ‘ . : 138
{Egéﬁséé;; -~ ,; ’ ‘ ; ; . .
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h+o . . h+o

With the resulxs'of Sections 1.5 and 1.4 the previous
expression becomes sin.x (0) + cos x (1) or cos x

which completes the proof that é%-sin X = COS X.

-

2. DERIVATIVE OF y = cos X

L 3

e §“oe

A}
2.1 . Introduction

Now, we know that g%-sin X = cos X wherg x is
» any real pﬁhber and we take the sine of the angle

whose radian measure is x. By the Chain Rule

d . . d . ., du
. Ix sinu = gz sin u ’Z&?
where u is a differentiable function of x. We use
. the Chain Rule to obtain derivdtives for the other
trigonometric functions. ’
2.2 Proof . .
-_ . . . <.

. We Will now prove that we were correct in our
. guess about the derivative of y = cos xi" We use the
identities |

I
i

cos X = sin (% - X)

and’

.
cos (x-y) = cos x cos ¥y +.sin x sin y.

' * ®

-

[}

[

"It should be if'é% sin fikf

cos (%-X) 'ag; (%-.X)

siny) (-1

L .
(cos 3 * €os X % sin

N

*

cos x-+ 1 * sin §) (-1) = -sin x.
1

[N

'

3. WHEN DEGREE MEASURE IS USED
P

3.1 Geometric Consideration

Let us now attempt to resolve the problem that
arose in ?iif 159 where we computed the derivative of

y = sin xJat x = 35°.  We hoped to get cos 35°. Let

us use the notation sin x° if we are taking the sine
of the angle whose degree is x and the notation sin x
or sin x (radians) if we are thking the sine of the

. We consider the
Observe in Figure 2 that -0.801°
the value of cos 2.5 does not seem to di§agree with

angle whose radian measure is x.
followingggraphs.

what the slope of the tangent to y = sin x at x = 2.5

looks to be.
tangent.to ¥ = sin x at x = 2.5 appear to be 0.99967

Now, in Figure 3, does the slope of the

cos x°. Now we see

.

geometrically that we should not expect'the result
we obtained when we were using values of trigonometric

functions whose radian measure was X.
.

u [l » \‘ ‘ ‘ - v
B ~ N
, U160 o : uiso -
13 sin (x + h) - sin x - o
. im - ) .
e‘ h-)'o k . d - d . o ‘
: o ‘ . i . Ix €°s x = g¢ sin (7 - Xx) |
t . . h -1 ’ . sin h i
= sin X « 1lim LEEE—B————l + cos x -+ lim s
) R = = cos (%- x) « (-1) |




- dlsin u (radians)] _

dxr

cos u (radians) - H?‘“’*

& Thus,

. ) LY |
. -—l-
. ,
0
' R
pe s =] -
. Figure 2. Radian measure.

- \ ¢.999 53'999 | v =cosx @"997
\ . | '
|

'
: tTangent at x = 2. 5|not
! | ldistinguishable 1
) H :from curve. 1
! b .
| i .082
y = sinx 1.027 PR 1 &
0 ¥ H— ——— £
-1 T
ﬂl_,.. 1 7 2 2.5 m 5
F’igure 3. Degree measure. .

3.2 Obtaining a Formula When the Angle is Measured
in Degrees

obtain a formula for

9

sin x°
-i—ai———l .
4

| Where u is a dxfferentxable function of x, the ‘Chain
- Rule gives )

3

R 1 Tex Provided by ERIC

Now, sin x° = sin (T%ﬁ x).

v Jj--—ld SII;(X % [Sln\ X)]

J

-— e r—— . -* - ° .
. = cos (737 X) * 155 cos x° - 177

by Chain Rule.

3.3 Reconsiderations

! ‘ ' ‘
Returning to QJr geometric consideration of
y = sin x°, where x = 2.5 we have

d(sin 2.5°) _ . T '
—(ﬁx—L—COSZ.S'm R

Ga

'~=f(0.9990)(

’

3.1416

180 ) = 0.0174

This certainly looks leeya much more be11evab1e value -
for the slope of the tangent 11ne at x = 2.5 whlch is

.Q. Al
* sketched in Figure 3. > :
« & [N .
s o N .
We now can express d(sin 35° in terms of cogf35°. .
< 4 xX N
d(sin 35°) _ - o, mu . ;o
.__(_di_-l-c?Ss 35 . T80 . < »
= 0.819@ ( 180 .i\3:0143. )
Our approximation of 0. 0143 that we obtaaned in Unit
159 on page 12 now lodﬁ; good. N 'Na . .
A’Erom'now on when Me\dszerentia%e'trigonomét;?c
funotions we. will alwaye use rgidan ‘measure. ) ]
Jf . . -
. P N N
™ ¢ ' - A
N “ . - 0
. 142
. ’ ¢, Lo .
rd hd A
- N . >
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4. PRACTICE PROBLEMS INVOLVING sin u AND cos .u

+

4.1 Rinding Derivatives

Ty

Let us combihe our new knowledge with ‘previous
techniques for finding derivatives to work some problems®
By the Chain.Rule, where u is a differentiable function

-

f X h
[o] ’ dWe av.e ) . d/ ‘ ) .
1 = 1 - u = . u‘ * 1
. a'; sin u aﬁ sin-u a'; cos u a-;
and — N\
) 1N
d _d Jdu _ . du .
a-; cos u a'i cos u a—f = .sm u a'; /

These formulas are used in the following examples

Example 1: éL sin 3x = 3 cos 3x

. +

‘Example 2: Ic sie (x2 + 1)

2x cos (x%2 + 1)

Exampl : d cos (2x - 3) -2 sin (2x - 3)
Tx- ~

-

Exergises .
\ dy o
For each of the following find ax
1. y = sin 2x? /(
2, y = €os 2x . 's
3. y = cos (X% = x) ceoe .
.y sin (x/3) o
“5."  y'w cos x° .

//w In 'the following examples, we use the .formulas £5r
taking derivatives where a sum,, product or &uotient is
also involved. 'These formulas are given in Appendix ¥

- if you need to Teview them,

Exampke 1: y = sin 2x + cos x
. - ~_
- d - . N ; .
¢ 3% 2 cos 2x sin x. ‘ .
: Y I .
\)4 ‘ 1 ¥. 0 " :

.
T - - . o

s, : Pl .

Example 2:

aﬁ‘a‘}‘%a%

[

Example 3:

’

" L]

] g

\

- 2(1 + cos %) cos 2x + sin 2x sin x

- : - U160
4 sin cos x . \

2 sin x (-sin x) +°cos x {co5 x)

2[(-sin? x + cos? x)].
sin 2x
1 + cos x R .
(1+cos x) 2 cos 2x - (sin 2x)(-sin x)
(1 + cos x)?

(1 + cos x)?

' Exercises For each of the

following find 9% .

dx
6. y = sin x + cos x . !
v 2 \ ]
7. w = x° cos 2x - -
8. y = cos® (2x) '
49, y = sin x + x
10.  y = cos 2x - 2 cos x -
11. "y = sin? x cos? x ‘ ’ .
. A
= ) : ) - ,
. -~ R I N
4.2 Finding Antiderivatives S~ _ ’
We recall from our work w&&ﬁ\fntiderivatives that
o
[E). = F () +c '
- ~ ’
- where - ’
’ L Fu) = £ '
u) = £(u).
du .
Thus, - . T
' Jcos udu = sinu + ¢
since ;
PN —_—
d . . ’ :
Fiq sin,u = cos + »
and
[-sinudu = cos u + ¢ )
since_ PR . . ;\1
- = - sin u. - . 1
a-t—’ cos u a sin u N .
., ~ ¢ ]
[ - ]'41<4 e ¢ -
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The following are examples using these formulas" additional ammunition let us return to battle with the
“« - 77 plus the formulas ‘ challengesproblems hoping for a successful*dut{:\ome.
! aff(u) du= fa £(u) dl:l_ o " If -you have trouble.getting started on a problem
’, and ' -t ‘ * or hit a snag-refer to the discussion for help and then
’ ~ JE(u) "+ g(u) du= {f(u) du + fg(u) du. try to continue on your own. After completing your
L. . Efcémple 1 {sin';c i Sf-$inxdx = -cosx+ c. 501!1tion to a challenge problem compareﬁ/our work with
R Example 2: fcos 2xdx = !-.s[cos 2x (2dx) the solution given.
N ’ =% sin 2x+ c, 5.2 Out Fishing Again

Example 3: [(2 - sinkx)dx= [2dx +[-sin kx dx

. .Our first step is to use the information from the
= f2dx+ 2f-sin(%x) (%dx)

graph in Figure 1 of Unit 158 to d/ne.(mine the eqixation

‘.“ ) , ' = 2x + 2cos kx + c. for the position of Jack's cork. .
Exercises . b . ' ’ From our knowledge of tr_igonome.try it is clear 'that
- . we have the graplr of an equation of the form y = A sin Bx,
12. 'Icos (-2x) dx . ~ - where A is th a{mplitude anc'i -Z—BE is the period. Thus,
13. J's'in (12(-) dx a from‘t‘observ;'z Figure 1 of Unit 158, we see that A = 4
14, J2 cos x dx : RN ‘ and ZB—H = 1.6 or B = -511 Substituting, y = 4 sin §4l t
’ . is the equation for the position of the cork. The
15. +f2 sin 2x dx . . )’ ,\yfsition of the'gork at t = 0.5 sec. is ,
16.  [3 cos (%) dx * g\\\ . . - - tn - ,
’ .= - y=4sinB—(1.Sﬂ = 3.969 cm.
) 7. [isin (i—) dx . )
18. - . ~ = 1. : h
P f(3 sin x) dx , - ‘:t t = 1.5 sec. we have

\
19. j'(cos X + sin 2xipdx
20. fsin? x dx ' '

. A
y = 4 sin |:54—" (1.5)] = -1.531 cm.

. . . o Now, the speed (or instantaneous rate of change of
. "21. feos? 2x dx ‘ :

> position with respect to-change in time) is ?{% Thus,
" Hint for 20 and 21; sin? x = (1 = cos 2x) . we have '
i - cos? x = {1 + cos 2x).-
L dy _ , (5m Sn . _ Sm
o - \ Lo a%~4(4)cos-z—t St cos - t.
. , So, the sp.eed at & = 0,5 sec. is
5. CHALLENGE PROBLEMS REVISITED : . .
. . - . ) v s (al-y- = 51 cos |37 (.5){ = -6.011 cm/sec hd
5.1, Introduction to Solutions - o to . ¢ 4 v ) cn ) ‘
; : - \(\:-,.5) _ .
. Now we are armed w1th. new knowledg\e and skills in and the speed at t = 1.5 sec is ‘ ..
Calculus where sin u and cos,u are involved. With this ’ . . ' .
X . N o .
. . . 12 . . 13

ERIC Lo T L - -

«
= '8 4 -
Full Tt Provided by ERIC. . . .




’: * “‘\ ¥ M ’ A ] - - * ’ ‘
c S y ’
. - . U160 : . ) ’ U160.
2 ,cos® t
d = 5n A=28 (4--—2_4+5059,
a)tl(t=1 5) 57 cos [T (1.5)] = 14.512 cm/sec. sin® sino .
‘ . e e —8A £ o [sme (0) - 2cos e] [sin‘e (-sin @) « cos 6(cos 6) ]
The last question to be answered is "At what point 8 L ‘sin? @ sin? 8 - :
during th ‘i i £al11i “th ‘ - .
uring the 2 second‘interval is the cork falling at the R - 2cos 0 , (-1)(sin® 8 + cos? 8) . )
J fastest rate and what is the rate?" We wish to mini- .2 . 2
" . d 51 . . . -3in® 6 sin® 6 .
. m1ze-la% = 5T cos Tt on the interval (0,2). The . 3 .
- minimum value of cos T t on (0,2) is -1 which is g = 8 Zﬂs—e—'—l] s "
. L fnl -
= attained at T or t'= 0.8 sec. This will . - .sin® B e
minimize \W ’ , since sin? 8 + cos? 8 = 1. For g% = ¢ we must have the
. ’ expression within brackets equal to zero, but this. means |, “
5 g% =57 (-1) = -15.708 cm/sec. ) j that the numerator must be zero. Thus, 2 cos 6 - 1 = 0
\(mm) ) N : or cos & = %, Since 8 < g-«we have ¢ = 1:,:- or 60°, We
‘ 5.3 Maximum Putter Gutter . also observe that for @ such that 0 < 6 < 13:- we have
- . .o . . . i g .
" ’ Referring to Figyre 2 of Unit 58, we see that cos 6 > ‘I;:hmh implies 2 cos 6 - I' > 0. Now looking
R if wé maximize the cross-section we will maximize the at our expression we note that when 2 cos 6 - 1> 0 o7
capacity of the gutter. We also observe that 6 can be « gi have 'd—_ >‘Q' In : similar way we can conclude: that B
chosen so that 6 < %— ) Jg < 0 vwhen ? <o z ’
- . . T . )
From Figure 2 of Unit 158 we have csc 6 = )E(' or. ) We have now verified that e_ 3 1? in fact the
. x=4cscoand cot @ = % ory = 4 cot o. . value‘ ofﬁe for wh1ch-the 6 area is maximum.
;f\A(Area of cross section) - f& Since x = 4 csc 6, we have
NG = Areaf of Rectangle - Ared of Triangle T ‘
" ' ' X =4 csc§=4.619
=4[(8 - x) +y] - ¥(4) ¥ - .
o - _— . . and - v )
St = 4[(8 - 4 csc @)+ 4 cot 6] - %(4 cot 6) - 4 \ ‘
(substituting 8 - x = 3.381. ’ < .
S ) « for x and y) ’ ) ooh
= 8(4'- 2 csc 6 + 2 cot 8 - cot 8) ~ . Thus, the bend should be at approximately 3.381 inches .
' Ce from the bend¢for the r1ght angle and the metal should 4
- =8(4 - 2 csc 8 + cot 9). : be bent up % rad1ans or 60° for a gutter with maximum
. The area will be maximum when a—— = 0. We don't * . capacity. ) -~ ;
W know how to find the der1vat1Ves of csc 8 and cot 6 " .
f” at this.time. What we can do is express ¢sc 6 apd 5.4 Average Power Comgut'ed
J; * c¢ot 6 in terms of sin 6 and cos 6.l Doing this we have -~ 1’-we have (Average power) :ﬁ
" S . . ) T ' 4 R ~
K * - N o -‘ . P = % g p dt, ) M .. S
- ~ . - L] -
j:z - 147 ~ ‘ 14 ‘ ' ’ ) 15 Pl
'j" ., . ! ' N . 148 N . .
S O ‘ . , - R -
« ERIC o )
Coa - - ‘ ’ ‘Y :

Ao, - 7 L4 I -
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U160 z
vwhere ' = 12(8§@®. Thus the rectangle shown by \\\\ with -
- o he1ght equal to the average power P has the same area
. L] .
p = 1700 sin? VAR - as the ared under the hump.
L
Observing  Figure 5 of Unit 158, we see that the graph (warts) s ‘ )
W (wa s) s ° >
of p repeats 1tse1f every 12 micro-seconds.' Tf}us T = 12. 1700 - : L
" Substituting," g1\(es . i , ¢
. o
. 12 ° . 7 127
.4 o, om _ 1700 2 T
P ﬂ' fo 1700)'511’1 H tdt = —1—2— IO Slﬂ -I-z tdt. ~
Th1s problem is 11ke Exerc1gse 20."in .sect1on 4, 3 We
w111 replace . -~ ) *
. -, P 850 Average
- iz M ~ ! \ . Power
‘ sin® 45 t . . ) .
. ’ . . ‘
L8 ' ‘ - » > ‘
(1 - cos .t) .
s .
# . 12 :
_ 1700 R L4
P =5 % %(1 - cos g t) dt N L .
N . : \ , t (micro sec)
. 1700 1 12 2 f '
. ) ey [ % dt - [ cos gt dt] JL——E\\\\J ) 12 18 24
P 0 ' * *
) . . -~ Figure 4. /ﬁ geometric interpretation of average power.
12 12 » N r
1700 [ 6 T g7 4 '
= dt - Y il . -
; 77{— fo oz j'o §cosgt dt] ‘ . ‘ .
1700 - 12, 6 : 12 , > 5.5 Pulling a Box Correctly
00
. = == {%] - = (sin z t] )} :
23 0 L 6 0 o . d ..
) s Finding\a-g using the quotient rule gives - .
~y , .
1700~[‘ : 6 L . . ] ‘ ]
' = e 12 - 0) - = (sin 27 - sin 0 N
] 24 & ) L ( ) — dF _ -KW (K cos 8 - sin €)
& ’ . . ) - . : .. (K sin 8 + cos 8)?2
. =0 (2 - 2200 < 850 watts. TR
. : a— = 0, we must have
) . . .
Now, consider the geometric interpretation, . .
. % - ’ - Kcos 6 - sing =0
12 T [
> s 2 T . '
. si t dt or .
J’O P T’z‘ ‘(r Q‘ . ’ 7 ~
4 - . K -JEln & .
represents the area (A) under one hump of the curyve Wcog 6 . . -
v _shown by //// in Figure 4. We kpow’ 755 A = 850, so_ - T 17
16 ” . -
.. | : R | 15 "~
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S - ’ 0 - . ° -
. . - U160 ' . : , U160
. Ehus, the first derivative is zéro for 8 such that A 6. MODEL EXAM
'« tam 6 = k we can alsg show the first derivative changes: - o
from negative to positive at this value of’® which, 1. What technique is used to show 1im SiI h.= 1?
verifies that this is the—angle-where the-forcé is ' h+0 2 °
minimum. Noéw, K is always some positive number, o 2. What limit other than 1im SiD h _ 1 was used to
Jason is correct and the angle depends on the coefficient '\ h*Q
of friction. . L A& prove é% (sin x) = cos x?
= o . " o, ~e
Complete the statements in 3 and 4.
W 3. The value of éL sin x is ,when
« ~ ° X
x = 17°, )
. 2 = +d .
4, The value of Ix COs Xx is i _ ,Yheq
. - 4 N X = 390 . ,
- > N b ~~
: \ . .
— § . In pr9b1ems S thru 10, find 3% .
s . S S .o
Figure 5. ‘Coefficient of friction. ~ .. 5.7 y = sin (x? - 3) .
o - . . R 2 -~ "o
’ ° . . v .~ 6. y = 2 sin x + cos 3x .
‘ - s . L ,
L .. . , 7. y = sin? x o :
- If one object has a higher coefficient of friction “8. y = simx cos x \\\\\\ R -
than another object on a particular surface then the ) -
. : . . ° 9. y = cos{(3x? - x)
angle at which the force should be applied is greater. N ’ . . - .
VoL, Y L : ) ' 10. «y = cos?x sin x , K
4 - . ° .o . > - - Find the antiderivatives in Problems 11 th;é;;>.°°
L} d - s - » -
. - - > . 11: I sin x dx .
2 . , o T L o
). ° PR ‘ - .
% . . v
) 1. CN 12. I cos (3x) dx C.
iy A\ r\‘ - ) - w Q’-A ’ :
y « . .. < Y oo ! .
oL e . 13. I (5 - 2sin x) dx
. '
. N '

;
-
O3
——a
B

18

. .
T oy
- - 5 e LIS N ~
. .
P v | T ’ .

14,

v

. . KW
G1v?n F "X sin 6 + cos 8

. dF
y find a—e— .




4. y =
N 7%% -
v ) y =
d=

‘\x
s y =
. o
7. wJ =
, .(ai-)%=
8. y =
d=

X
N 9. Y&
-
10. y =

»

3
L}

]

« 5
- .

7. ANSWERS TO EXERCISES

-
-

sin 2x2

4x cos 2x?
cos 2x °

-2 sin 2x
cos (x? - x)

-(2x - 1) sin (§3 --x)

180
sin x + cos x
cos X.-"sin x
.
x2 cos 2x -
R .
-2x? sin 2x + 2x cos 2x

-2x (x sin 2x - cos 2x)

cos? (2x)

-6 cos? (2x) sin (Zx)k
sin x '+ x

dos X + 1

Cos 2X - 2.cos X

-2 sin 2x + 2 kin x

2(sift x - sin 2x),

’

.y

13.

14.

15.

16,

17.

lei

19,

20/

i~

)
~-.U160,
y = sin? x cos? x '

1

-2 sin? x cos x sin x + 2 cos? x sin s cos x
, .

) - A .
2 (cos? x sin x - sin® x cos x)

2 cos.x sin x (cos? x - sin? x)

-%f-2 cos (-2x) dx = -% sin k-Zx) +C
!
-2f-% sin (%) dx = -2 cos (%) + C

2feos x dx = 2 sin x + ¢ s ‘
/ v
-f-2 sin 2x dx = -cos 2x +"c y

93 - 3 cos (P dx =9 sin B +c N

-[-% sih (%) dx = -cos (%) + c

f(3 - sin x) dx

JFdx + [-sin dx = 3x+cos x+c

fcos x dx -%f-2 sin 2x dx

J(cos x + sin 2x) dx

Y

sin x - % cos 2x + ¢
o

x dx = %f(1 - cos 2x) dx

.%[Idx - %f2%cos 2x dx] =§- L sin2x + ¢

A}
-

5[ (1 + cos 4x) dx .

.

feos? 2x dx

¢

v
]

L[fdx.+ % [4 cos 4x dx]

»

1 .
7 + g Sin 4x + ﬁ

21

S —

-
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UNIT 161:- DERIVATIVES OF OTHER TRIGONOMETRIC FUNCTIONS.

»

1. OBTAINING FORMULAS . . . . . . « o . v 4 oo o o oo 1

- 1.1 Introducti?n e e e e e e e e e e 1-

. 1.2 The D®ivative of tanx . . . . . . . . .. .. 1

. 1.3 The be}ivative of secx . . ... . ... 001

1.4 Complete List ! .,. 2

I ’ o - -

“2. /“PRACTICE FINDING DERIVATIVES . .. . . . . . . . . . . 2
_"‘ 2.1 Using Chain Rule Again . . . . . . .. . ... 2
2.2 ‘Aﬁplying.the Formulas + . . . . . o .. .. .. 3

2.3 More Involved Applications . . . . . . . . . . 3

2.4 Puttering Around .. . . . |

3. MODEL EXAM". [ & v v v v v e i e i o i i it s aa. 6

4. ANSWERS TO EXERCISES . . . . . . . . . . . . .. .. 7

- . . -

5. ANSWERS TO MODEL EXAMN. . . . . .~ . . . .. ..
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1. OBTAINING FORMULAS . °* . -
s £
1.1 ~ Introduction ) o ’

In our discussion of the solution td.kherbuttert K-
Gutter Problem (see Section 5.3 in Unit 160} iwe
obtained the cross sectional area A of the, gatter
8(4 - 2csco + céte)
obtain 3_ we had to éxpress csc® and cot e in_terms

i

from the equat1on A=

~

of sin® and cos® since we'did not have- formﬁlas

for the 'derivatives of these»tr1gonometric funct1ong.
To eliminate this extra work in the future, we will
now dérive the formulas for the derivqtive% Qf the
We will follow '

the same plan used to find %— and express each of

other four trigonometric functions.
o
the other functions in terms of the s1ne an&ﬂ%051ne
funct1on;

L]
> e ! ~1 N
2 s " é . '
1.2 The Derivative of tanx T ¥
To obta1n thg formula fbr the der;vatyve of tanx i -
sifx
cos x X .
which guarantees that \ - - .

<
- . > A

we express’ tanx ‘as . and use the ndﬁ& for quot1ents

- ‘where u, and v are

. . i e .

v (du/dx)

. d u
& e

. . P
3

*

» .

ad; tan X.= d

dX°

T L2

- u (du/dx) C -

V7e

(51n Xﬁ)

= .Cos X -
>

- .
. .
4 a

diﬁferentiable functidbns of X.

)

cdsX - sin x (-sin‘x)
J

COS X

*o

1%

¥

cos?
=

x + sin?

v

x:

cos?.x
R \

2
. . © COS(!I X

\ 1.3 The Der1vat1ve of sec X

.

We will express—sec-Xx-as-

-

_1
cos -x

rule again to obtain the.der1vative

= N

and uf€ thelquotient—

ofﬁsec X. h
)

s




- ? 4 ! : :
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» ’ d d 1 cosx +.Q-1(-sinx)
sec X = ( ) = :
ai\— . dx. ‘cos x’ " cos? x» -
- . sin x *1° " sin x
= . = sec X tan X.
cos? x cos X cos X .
Exercises 2
. cOs X . .
1. Expressing cot x as Ssin x follow the procedure used to
r ]
obtain the derivative of tan x to obtain the derivative
of cot x. " )
2. Find the derivative of csc x by replacing csc x by ST x
r
and using the same technique as used for the derivative .
. ~
L of sec x. ¢
[ . T
lqi Complete List
. . . -
With the solutions to Exerqiip 1 and Exercise 2
. in the preceding section we now have obtained formulas ’
. for the derivatives of all six of the:trigonometric
/functions of x. You should check your«procedures and
results to Exercises 1 and 2 with the solutions giwen
at the end of this unit. The formulas for the deriva-
: tives of the six trigonometric functions of x are .

listed in Appendix 4 for your convengence.'

2. PRACTICE FINDING DERIVATIVES:

2.1 Usiné Chain Rule Again - .

L
Having the formulas for the derivative:of tan X,

cot X, sec x and csc x, we wish to obtain the formulas
for these trigonometric functions of u where u is a \
- differentiable -function of x. We apply the Chain Rule

e, in each case just a3 we did for sin u and cos u. ‘
. -
. For tan u we have . *
— - B - T T T & 7
. d _d du’ _ , du
- ) a;tanu—aa-tanu X sec Ua-f‘. .

157 ,
,,JEIQJ!:‘ 1 N .
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may also be involved. These®formulas are listed 4n

- “ X .Ule1
‘The Yformulas for the derivatives of the remaining
trigonometric fuqctions-of'u follow‘in\the same
manner. The formulas for all six trigonometric
functions of u are listed in Appendix 4 for your
reference. <« * = .
2.2 Applying the Formulas
These formulas.are apgfied in the following
examples. : : ‘ i : \
Example 1: é% tan (%) = % sec? %- N
.4 -
Example 2: Ix °s¢ 2x = -2 ¢sc 2x cot 2x.
‘ . d }' = . 2’ -
Example 3: ‘Ix cot x = -2x'csc x*,
Exercises . '
Find 3 in éach of the following. - .
x
Y.= é‘Ot 7
y =csc (2x - 1). - . !
- .
.+ y = tan x3. N
= (=x) } , .
y = sec } &2: ”
a ©°

2.3 More quolved‘Applications
. v i

In.the following examples w sum, product or_quotient

Appendix.3 for reference. DerivVatives invofving sinu”
and cos u which we considered previously are included
in the examples and exerciges that. follow. <
Example 1: Yy = tan 2x +/§ec X
dy _ 2 "
. 3§ = 2 sec® 2x + sec X tan X.
- : . ‘
o - ‘
. 3

a
<




“

Example 2: 'y = tan 2x. * finding %% easier, and they may, be of use to us inh

ay" ° future putterings.
3% = x (2 séc? 2x) + tan 2x

2x sec? 2x + tan 2x.

Example 3: Yy = T_%E%E%_ff .
‘ Y
gx . {1 +fran 2x)(-sin x) - 2 cox x(sec?® 2x)
x .

1+ ti? 2x) 2

>

e
- .

7

Exercises
For each of the following find %f

=-Sin-X 4+ taN-K—— — - -~ -
x? csc 2x.
tan x sin 2x.
cot® (2x).
sec x + x.
cos 2X - 2 ¢SC X,

y = x?

“ X
tan (-2-)9.
sin 2x
11 - tan x °

2.4 Puttering,é Around

* . 4— We return to the Putter Gu
one more time. Let us find %% ow that we have the

formulas for the derivatives Sf csc 6 and cot 6.
8 (4 -2

8 I:-Z(-csc 8 cot 6) + (-csgz e)] ;

8.2 cse 6 cot 6 - csc? 6],

.

- We see that having the formulas' for the derivatives
all the trigonometric ftqﬁi§ons'availab1evmade’
4 w

-
.

-
DR A v 7cx: Providod by ERIC
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" 3. MODEL EXAM

Differentiate the functions in Problems 1 and 2
by f1rsb expressing them in terms of sin x and cos X,

-;\ ~

1. i (tan x) ' ’

y ’

-~

2. é% (csc x)

Find %% is\each of the following problems.
. N

oy - 161 L a

v

PR A et Provided by R P
5

" -
3. y = cot X, '
E ’ ;, - Y RN -
~ 4, Yy = sec X. . 5%
5. y= sec (3x + Sl i ' - L
6. y = sin 2x + tan x2, ) L - )
) @ - ‘ N f
7. 'y = x tan x. :
k)
_ cOs X ¢ . .. -
8. YT 1T+ tan 2x°
Q" -
.
¢ » 2
s
- A .
t 4 ) ’ ———
4 1 lg
¢ . .
~. . .
. s
-
L - ¢ 7 - *
:‘J«‘¢ ‘o
Y . , . ‘
N >
I .

Ul61
4. ANSWERS TO EXERCISES
. . s
d _ d ,cos x . .
1. gy cotx = HE(ETH—E)' By quotient rule,
d(cos x) - Sin x (-sin x) - cos x (cos x)
dx'sin x j sin? x & . A
. -sin® x - cos? x _ -1 (sin®x +cos? x)
sin? x . sin? x
$in? x
d _d 1 .
2. ag;?sc xv— HE(ETH_E)“ BY quotient rule, o
d ( 1 ) . sin x (§) - 1 (cos x) _ -cos x
. dx'sin x ’J// sin? x sin? x
= 1 . 80s X _ |
T sImx., sinx - TSSC X copx.

E 2T

\ .
We essentially d1d these exerc1ses 1n our A

Note:
calculations for a— in 5.3 of Unit 160*
3
X
3. Yy (= cot
7 A Y
%% = @-csc? %)(%) = - % csc? % -
4. y = c¢sc (2x - 1).
d X ‘o
3% = -csc (2x - 1) cot’(Zx - 1) %\
= -2 ¢csc” (2x - 1) cot (2x - }):
5. y‘=‘tan x3, T “ '

g% = (sec? x*)(3x2) = 3x2 sec? x?. .




i

124

~<

[

AY y 2 /
“taﬂ X sin. 2x.
T

[ 7

) 2 U161 °
sec (-Xx). )
e ¢ P .

[sec (-xj tan (-x)](-1) = -sec (-x) ta; (=x).

. ) v o, ¢
sin x™+ tan x,
N e ‘i\‘
cos x +sec? x.
. ~ )
x? csc 2x. - . .

x? [-csc (2x) Eot (2x)(2)] +.[cse (2x)]2x
Yo e '

2x ¢sc (2x)(-x cot 2x + 1). . ,

.

“tan x cos (2x)(2) + sin (2x) sec? x. ©

cot? (2x).

3 coczi(z;) [-cse? (2x)1(2)

.

-6 cot? (2x) csc? (2X).

.

sec X + x. ? . + .

»5ec x tan x + 1.° .

- N . -

‘cos 2x - 2 cs¢ X. BN

-sin (2x)(2) -,2(-cs€ x cot X)
N ‘ 2
22 sin-(2x) + 2 csc x cot x{
b xl
x? tan°(§).
1
x? sec? (P)(P + tan (P - 2x

s .
{

\x[:%sec2 (-’2(-)+2t?,h (%)]. L g

“

(/

—sin 2x_
1 - tan x °

(1 - tan x) cos (2x)(2) - si; (2x) (-sec?

U161

»

(1 - tan x)?

-

(1 - tan x)?

{
.)
gl
P /
\*
- K3
. ,
7
' 3
-
« -_—
2
¢ i
« -
P T !
[<d ) ®

164 *

4, + A x

A ~ .

' ¢ ’

i ® a

- R e ¢

X),

_ 2(1 - tan x) cos (2x) + sin (2x) sec?® x )
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APPENDIX 1
THE TANGENT METHOD FOR ESTIMATING DERIVATIVES*

.

.
\Q ,

Gbjective 17 To be able to use a triangle and ruler to

estzmate the slope of a line on a graph.
4

Graphical Method for Finding the Slope of a Line

Many times in our.work we want to measure the slopes
of lines plotted on graphs. We can always calculate the®

slope of a line by reading the, coordinateg of two points

on the line and applying the formulé

. - - ‘ ’
slope’'= _change in vertical units .
' P change in horizontal units
- <
. Y2 Y1 =’%xl )
. xz - Xl x. . - * .

" But there is an easier way that saves the effort of read-

-~
-

1ng thé four numbers from the gfaph necessagy to calculate
each slope. For this method, you will need ,a §tra1ght
edge or ruler, and a small drawing triangle. !

Figure 1!1 is a graph that shows the profile of the
Union Pacific Railroad. The problem is to find the slope
of the railroad between Lakeside, Utah and Wells, Nevada
d1rect1y from the graph using as little arithmetic as pos-
sible. The following steps provide aﬁ%easy method to
measure this slope.

Step 1 (see Figure 1.2). Place the triangle with one
edge along the line whose slope you wish to measure.

Step 2 (see Figure 1.3). PZaee‘the ruZe}’against‘the
other sidg‘%f the triangle. Check that the first edge of -
the Eriangle.is still‘ékong the line you wish to measure. .

. oAy
L ‘e x PRl

*Adapted by the UMAP Project Staff from Diffe;ent1gtion, Second
Edition, 1975, Project CALC, Education Develop@ent‘tenxer, fnc. X
Newton, .Massachusetts, pp. 27-60.
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el

. - N s -

Step 3 "(See Figure 1.4). Slide the triangle along.

EEE LLLaR,
*aﬁ ’ the ruler (holding the ruler firmly so it will not slip)
-w:’ it % . until the first edge of the triangle passes through an ¢
W e e B SHHESREEE | ine to bet 3i; ' ‘ . easily read intersection of the graph paper. (In this
RS Evanston B measared . sq s
T example, the t ngle was moved until its edge passed
R G Wells, Nev. through the intersection of the 1,000-mile line with the
Sreen H'Jve' =l 5,000-foot°line.’ Since the ‘triangle was slid along the
gttt : . ruler, this edge is still parallel to the line whose slope
) 049536 = % ) ’ is to be measured. The slope of the edge of the triangle
) HEEEE L : Lovelock 1s therefore still the same as the slope of the original
S G @1 3L ' line.) ' .
. £EE§$.‘ g s 4 fes CER i i o
i e f1e3istsy : #* Tt 2235s: e
et : : 8 - i it .
¢ % Triangle f: . . ! BH % i
SR ’éa ity hE: €3 i et = g , m%
i distance aiong\‘tra miles @ .’ . . i R i
: 1.000 ) 15 oo RS Triangle siid 7
‘ \- ’ . ) ‘ . < : ; m«u:umpm i
N \ Figure 1.2, . . : through a major <ii:i3t Wells, Nevada
; B . intersection }
. . o S
by * ° E%" o 223 . 0;;!:
\ 2 yiiic
e o i ;o S j
i 32 233 "N: T 2 & N
I o : Bl e N% ¥ ER 33_: > -
. Evanston E i s . peizi ity
e == PR N
' e s Rt R e
~ Bl 35%3 ruckee, : - ’ ‘
. « £ 538 g n cH e
r—% g R » i 222 i : .
: : no : 1,000
A Uteh 15508 S i . DS
~ . Lak SR - Figure 1.4, . R
? iy gl lh ~ ' M
s . : H . Step 4 (see Figure 1.5). Read the slope of the edge ®
triengle mi%iii Y . . of the triangle at the point where'the triangle cuts the
. Sacramento * next major vertical line on the graph paper. Here the
. next major vertical line is at 1,100 miles or is 100 miles
O R s O 2N 1,500 . 3 . . . . . .
AR Y L RAER S . further from the first easily read intergection. The tri-
v . ) Figure 1.3 . \ . angle edge intersects this line 1,100 feet fbove the first
. e : , . 3 ‘
l:l{l‘ic X . . by A'3- . . ’ T A-4
F . . s . . H G
Y ~ . ! 165 " -

‘ L3 .
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read intersection.

The upward slope of the triangle, and of

the track is therefore-

Exercise 1 (Short Method for Grades on the UP-SP RR).

E lC

Full Tt Provided by ERIC.

1,100 feet =11 feet
100 miles mile

I3

or 11 feet per mile. Note that &f you choose the hori-
zontal distance to be 1, 10, 100 or 1,000 miles, the
divisiom can be easily done in your head.

Figure 1.5.'

2

Using the
method above, find the slope of the track between .
* Reno, NV and Trugkee, CA
Greeo River and Evanston, WY
Midsegtion Between Omaha, NE
.and Julesburg, CO v .
Wells and Lovelock, NV

169 S

Improved Method for Finding Slopes

It is possible to improve this method to avoid the
Try the
improved method on the Same graph of the UE-SP RR you have

division and the placing of the decimal point.
been.using (Figure 1.1). As with many "how to do it" direc-
tions, it takes much longer to describe than to do, so
follow along and your patience will be'rewarded. If you
have trouble followingAthe*diTEttibns;’hiVé’you? instructor
Eive you a quick demonstration.

Setting Up a Scale for Reading Slopes

Step A (Figur“e 1.6). Mark a standard inter&cion
one major division in from the right-hand_edge of the graph
paper. (Such an intersection has already been marked with
a © in Figure 1.1 at the beginning of this section, and in
which you may continue to set up a slope scale and make

measurements.)

¥

"

-, » .
Step B (Figur;}l.6). Temporarily mark the first major

division above the center of the slope scale with the num-

ber of vertical units it separates. Here it is marked
+1, 000 feet since it represents an increase in elevatlon of

th1s amount. ,

Step C. Calculate the value of the slope for this
first division by taking the ratio of the vertical increase
(1,000 feet) to the horizontal increase (100 m11es) for ohe

major division. N
8h _ 1,000 feet * . ft o,
=
slope 8x v 100 miles = 10 &1 mi,

or 10 feet per mile.” Write this number of the* scale in

place of the temporary mark of 1,000 feet.

Step D. +20, +30, etc.,
opposite the main divisions, going upward fYom zero.

Mark the slope values €10,
Place
-10, -20, -30, etc., opposite {he main divisiqn§ going down-
ward from zero, (See Figure 1.7.) Write the units in which
the slope is measured (ft/mi) Qt the top of the scale.
are now ready to use the scale to measure/slope.

‘ A I

You
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fo.tupnahfotdmmdngofm... .

= =
Standard
intersection +1i‘m
100
ém& Cal.
. ﬁi «
s Y .
i i 3
] e 340
-
i ' . % 2 5%3-60
s Hhimento . t Sacramento $:4 San Francisco ‘
1500 E:«"soo
i Figure 1.6. - Figurg 1.7.

Measuring the Slope with the Slope Scale hd

+ " " To'usethe scale just marked to measure slopes in a
convenient and direct way, set the’triangle to the line*"
. You wish to measure and'sljdé it by means of the ruler
until its edge pass€s through the standard intersection o -
Read the value of .the slope at the-point where the edge of
" the triangle crosses the slope scale line. .(See Figure 1.8.)

NOTE: You cannot always slide the triangle .to a ~
position where its edge passes through both the standard
.intersection and the 'slope scale in one slide along. the
ruler. When: this happens, hold,the‘t;iangle,firmly.in the

Trna

(" position, shift tHe.ruler so it is along a different
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¢ edge of the tnangle, and ,then proceed to slide the
triangle in a new d1rect1on. By a series of such parallel ' 4 . . -
slides of the triangle, it is possible to position the . [
triangle so that the slope may be read,

Exercise 2 (Direct Method for Grades on the UP-SP Railroad). For

)

o practice, recheck the slopes you measured before and then try these:
Seitlon Slope
) Ist section after Julesberg
' - . Ist section before Green River
Ist section after Truckee
\ \
§7 Objective 2: To be abla to caleulate numerical values of
the average rate of change between values of

a funetion: (aj from a table of values, and
& - . (b) from a graph. .

A function in mathematics is a rule or a recipe that

’ relates two quantities such as distahce and time. We now -

begin a process that will 1ead~eventually to a method for

calculating the rate of change of a smoothly varying func-

tion., As an example we use the curve shown in Figure 1.9

which shows the distance a small iron sphere (a ball bear-

ing) drops as a function “af the time S1nce its release.

The curve in Figure 1, 9 was drawn by paSS1ng a smooth curve

s

through a set of){data points,

¢ Calculating Rate of Change at a Point . ” ”
P Eventually we will want to be able to calculate the ¢ {me in seconds)
" rate ‘of change of a smooth function at a specific pojnt. ) o s 10 . s 20 ol 30 35

Distance fallen by a one inch dizmeter
ball bearing versus time.

For example, we may want to know how fast the distance is Figure 1.9.
changmg (thit is, we want to know the speed of the ball

H

bearing) at, say, t = 1.5 sec, To answer this, let us . ®

back off a bit aftd answer a zelateq, but different, ques- ’ - ) !

tion; namely, what is the spéed of the ball bearing during . \ . , .

the time interval from t = 1,5 sec to, say, t = 2,5 sec? ) ) ) \
is questlon does not mean very *nuch ;uthout further . 174 ~A-10
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remarks.

As you can see from'Figure 1.9, the slope of

the curve changes gradually and steadily from t = 1.5 to -
t = 2.5..
is during this interval?

What then do we mean when we ask what the’speed

Calculating Average Speed Numerically

To avoid this problem, we define what is called the

.

average speed* over the interval. Figur 1.10 shows in

detail the portipn of Figure 1.9-from t = 1.5 sec to
- -t = 2.5 sec.-
how far the ball bearing fell during this time interval,

The '"average™ speed is thained by finding

and then dividing the distance fallen by the length of the ' R .
time interval. From the graph in Figure 1.10 we see that:
[} * N
when t = 1.5 sec, h = 36.0 ft e
when t = 2.5 sec, h = 100 ft. ‘ N
The average speed over the interval from t = 1.5 to t = 2.5 C - ) :
is then: . ) . ~
. y |
v = distance fallen _ 100 ft - 36'ft
] T . - ; c
C av  time to fall this distance i:S sec 1.5 sec ; _ Figure 1.10. Small section of Figure 1.9. ‘
- 64 ft _ \ ' . . o . - ’
. = Tsec ° 64 ft/sec. ) ) ‘ ‘
In symbols this calculation may be writtén: . . : )
‘ S Tl R ‘.
av tz "‘531 A . .
N ’ v \ °
and is, of course, just the formula for the slope of the o,
line from point A to-point B in Figure 1.11. Point A has
coordinates fl = 1.5 sec and h = ‘36 ft while 'the point B "
has coord1nates t, = 2. 5 sec and h, = 100 ft. . !
. t
- Ty
. “ . ‘ ‘ “ . “
} *It is very important to realize that "average” here does not Fjgure 1.11. The '‘average' speed from t= 1.5 sec K -
mean what it usually means. The average speed is not found by add- to t = 2.5 sec is-equal to the slope .. .
ing together a number of speeds and then dividing by the number.of of the Iipe from A to B, ¢ . "/
speeds. The average speed in the sense used here is that constant 4 ° ,
speed at which the ball bearing would have to move between t = 1.5° . R v : -
sec and t = 2.5 sec to cover the distance it actually does move. . N . s\
| N ' 1l ' 176 > '
| .
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. N S . o . Ca}culat1ng Average Speed Graph1ca11y )
) ~ We can also f1nd this slope (average speed) using the .-
- . N )"sl1d1ng triangle" method described a shqrt while ear11er,

> which leads quickly to reasonably accurate~resu1ts. In -
* . F1gure 1.12 *this method .is used to find the average speed
¥ of the ball beating between t = 1.5 sec and t = 2.5 seg.
. The result compares very favorably with the'computed value

of 64 ft/sec.a - . ) T L.

‘ - <

e . oo *aa -,

30.

- s Objective 3: To ba—able to esttmate the ihgtantaneous rate
\\ ‘ " o + of change of a function by graphical means;

" . : that zs, measure the slope of a line tangent'

.
¢

ar
-

. to the curve. o .

25
g

Speed fronr t = 1.5 sec tort = 2,5 sec by-the

sltkding triangle method.

.
.

- . a
. Rate of Change of .a Smooth Function at a Point . -

‘ . i When we found the average speed of a falling ball over - .

7

an interval of one second, the average speed was not the

2.0

% actuat sp¢ed at either the beginning or the £nd of the .
interval. Rai}g{, it represented ‘that cénstant speed with * ¢ «
which‘fhe.ball would have covered the 64 feet fallem im the '
same one second of time.’ Suppose now that instead of want-

1 ing tbe average, we wanted the instantaneous speed at the’
moment the clock read 1. S seconds. The average speed over

-

an interyval can be measured with a tapé measure and a stop
watch: we measure the distance traveled ‘and divide by the

time it took to travel that d15tance. But -obvious an

. - . znstantanequs speed cannot be measured or qalcula ed in the
L ‘ same wdy; we would need to_ medsure the d1stance traveled 1n
< a time ;nterval of zero length., ¢

Tak1ng the Average over Intervals -

Figure 1.12,

’ We w1Il find ;ﬁe instantaneous speed - not by measuring
<" ° " a time interval of zero Iength, but by “sneak1ng up'_ on it:
. . - . s ) 3 . we find the average speed over shorter and shorter trme ! .
, T . " i c intervals beg1nn1ng at t =.1¥5 sec. The average speed,

. - : . T start1ng at 1.5 seconds, but measured over only 0.8 .seconds
] <o ) ) instead of one second; is measured in Figure 1.13 by the

. ‘. . .1,7,7 . . , * ”° "sl1d1ng tt1an§1e" method and comes out to 61 feet/second

RS~ - R ~ g e : A-14
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Figures 1.14, 1.15, and 1.16 repeat’ the measurement of
average speed over intervals of 0.6 sec‘ 0.4 sec and 0.2
sec. The results of these measurements oE the average \ )
speed are shown®in Table 1. We would like to continue mak-
ing such ‘graphs in order to extend the table to include
‘.even shorter.time intervals. . But here a prac}1ca1 diffi-
culty arises: For value§ of At smaller than about 0.2 sec,
it is impossible to read such graphs accurately enough to
obtain reliable results. "At the moment, the best we cam do
is+to say that the instantanequs velocity at t = 1.5 sec is
something near 50 ft/sec. 1In Appendix 2, however, we will
see how this method can be used tq arrive at a more accurate
answer. . '
o  TABLE 1 . .
Average Speed of .Falling Ball Figured'over ‘
Intervals Starting at t = 1.5 Seconds
* Time Intgrval Average Speed .
» N | v
‘ L,\t (sec) ‘ Vay (ft/sec)
1.0 . 64.0 | ' o
S .
0.8 61.0 ¢ -
0.6, ) , 5755; , - . .
¢ . © 0. 54,5 " —
Tooe 0.2 ° v 51.0 v
, -8 14 ' . o
. L3 . ‘- .
Exercise 3. Use the 'graph of Figuré 1.17 to estimate the instantaneous
'speed at t = 2.0 sec. Follow the procedure.described above, cafculat-
ing Ah/At for a succession ofgsmhjler and smaller values of At, -
«? .
beglfﬁlng at t = 2 sec.s e [ . +
., - L] . . -~
- . ] » . v { °
TF L T~ —* . . .
i 2 - R L)
. ’ . 4 ‘
- a4 . - 3
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. # . R ‘ . - )
Rate 'of Change of a Point from :che Slope of a Tangent Line . éets shorter and shorter, the points where the line cuts @
.. n If the method Just used in examined in detail ‘from a, the curve move closer and closer together. As 4t + Q (Fig-
graphical point of view, it>can lead to‘a more accurate ure 1.18e), "these two points unite to become one point;
est1mate of the 1nstaHtaneoug velocity. Moreover, “this the line then £5uches he curve in one point only; grazing ' -
', more accurate ansir can be found without the need to draw. the cﬁrve. Such a line gives the slope of the curve at
" ‘ » as many graphs as in’ F1gures 1.13-1.16, or to read as many ‘ that point and ‘is called a. tangent line (from a Latin-word :
‘successive values of the average Speed such as those in meandng "to touch™). The slope of the tangent line is ‘ )
, Table 1. ‘Thus, look at the series of diagrams shown in defined to the instantaneous -speed at the point (that is,
: "ﬁFigufe 1.18 and notice what happens to the successive lines at the‘instant of time) where the tangent line touches the
yﬁose slopes give the average SpPeds. As the time interval . curve. - .
a) L4 ; T - : Thistgznclusion gives ud a simple way to estimate the N
= - : - instantaneous speed (or rate g? change) from a smooth

. : graph. We merely draw a tangent line (which can usually ~

. : E . . be done quite accurately by eye) and measure its slope. .

To measure the slope of the tangent’line accurately, either

. ' - draw a long tangent line and read off widely‘separated
points to 'compute its slope as in Figure 1.19, or' use the

. . sliding” triangle ﬁethod as shown in Figure 1.20. |

.;‘%gg : Note that the value determined from Figure 1.20 is’ )

.

b)

48 ft/sec. This, then, is our estimate of the instantaneous

5 velocity at I.5 sec. ) o
&

- .

Exercise 4. Estimate the instantaneous speed of the falli'ng ball at

t= i, 2, and 3 sec by the tangent method. Use the graph of Figure 1.17,

R ' - . Exercise 5. The graph in Figure 1.21 shows the area of an opeﬁ wound

_—

Ly s R fitztan o !7 i T ‘VerSUS time: 1In doing the following, use th;: smooth curve in the
) : i 3 Eﬁ figure, not the dots. The healing rate is. the absoi‘te value of the

3 S . rate of change xfhe area of the\Wasured in cm /day .
. i 3esboss i

i : (a) Sketch a graph of the rate of change of the area of the wouynd
. ] i i e ) (cmZ/dayT._ .

g: xxxxx : . (b) When is the héaling raterthe fastest? The slowest?
v t 33 4 .
< . Tl ro—— ° a0 “ (c) Use the 'tangent method to calculate the instantaneous rate of
. - - ' . - v N
, . 4 healing at 8 days and at Ié.S days. .
Flgure 1. 18, The line that” cuts the curve begomes the line - : ] .
that touches the curve as the two point5 move . - . . . ¢ . -
» together. BN
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Exercise 6.
S

increase in g

both the lIst

»

Exercise 7.

curve that ha

ase the graph shown in Figure 1.22 to find the%

» .

. .

uantlty of ant|body 2 days, B»days and 15 days after

and 2nd anect|ons of antlgen Use the tangent method/\

A -

Draw a pair of coordlnate axes, and sketch a graphinef a ¢
s positive slope everywhere. Do the sames for a curve : v

-3
. whose slope is negative everywhere, and whose siope is zero everywhere.
10 1 ! ' !
'-.-
3 .
<« !
-,E, \ 30 Q
¢eFoL )
()
- é’l Amount ofzo
> antibody i
N i e
P g N in serum 10 )
ﬂ .
- (Y] S
- > -
© °.
2 3 - .
2 . .
s . "
i a L §3‘ » ¢
° 30 [t ] ' f
® & 1 \ TN
w“ Amount of 29 | :
° -antibody
~ Q in serum .
v 2™ injecti
; w10l injection
L. h . . I
~ ' * 1 1 3 ] {(
o o < s, o, \ s "y
Y v Days after 2™ tnjcchon of same untigen .
.
« 3 L
o R Figure 1.22. The slbw production of antnbody (a)- after a first Kv
u injection of antigen is followed by a prolonged ¢
” decline in quantity of antiBody {(not shown). If,
after this decline, a second injection of the same ’
~ . antigen (€ "booster shot) is giveh, the rise¢ in
R antibody level is rapid (B).
- s

———— M
TN
_~
- ¢
. 1
' ‘
~
| 190
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" ANSWERS TO EXERCESES = . :

)

1. Reno, NV and Truckee, CA:

Green River and Evanston:

+35’.ft/mile . . v
+7 ft/mile

Midsection between Omaha, NE
and Julesburg, CO: .

Wells an ;,Lovelock NV

+§ ft/mile . '
-6 ft/mile ¢

+16 fe/mite (£22) - .
-5 ft/ml&ﬁ;(*‘l) o
S -147 rft/mlle (*5)

Julesburg:_
Section, before~Green River?

Section after Truckee:

3. The table shows tha,t the mstantaneous speéd at t = 2 sec is

about 614 ft/sec: . SR
. — . e
At ‘Ah/At . T ,
(sec) (ft/sec)
- _ .
-
1.0 80 0° @
e
0.5 .. v 72,0 :
Y0 : 85.6 "\ .
0,05 ¥ |{"+ 648 .
0.01 A . ‘
F 0.005 64.008
. . k i . ’ .
g .
L, . ) .
e /-
- v t 6 % 34 "‘ R
(sec) . (ft ec) - .
-‘ al‘ ~ .32 ‘e . ’ M ) \ v
< . N R 2
2 - 83 . &"* .
. '3 96 » ~ . T ' .. @
-~ . . E k
) ‘ - ‘( ri}' 4
5. (a) See tlie graph at the top.of the next page. s o T
{b) The Healing rate is fa,stest at about 15 da‘ys, when the wound
is nearly healed., It is slowest at the outset when the °

wound Is newly formed. - 191 . ) -
v ?’(c) At 8 days® %bout 0.4 cfnz/day. _ ' -
/ Q At 13.5 d%ﬁ” abo%vo.s cmz/day.. " - " A-27

"ERIC

. ) .
T .
tl

~ T
5.a) :
b TTTTT 7
y 1 /
Healing A 1AL ..
. | Rm y R
- {cm? May) ; /
.///
0.4
4
A / N
0.3 '// .
Y ! ) .

' 4
0.2 A
|1/
, y
7 ) -
0.1 = g . .e
T : * \
., A
‘ : Duys
0 . 5 R 10 . 15, ? -
6. 1Ist injection: -2nd day: 0 units/day ©on
Sth day: 0.3 units/day .
- - 15th day: 2.2 units/day ]
2nd injection: «2vd day: 15 to 20 units/day .
: S5th day: O_units/day )
15¢h day: 0 units/day *

Note xhat';fter the 2nd injsciion: the amount of antibody may

reach a higher level than it does after the first injection."
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* 7. The following are examples of curves that satisfy the criteria . = " A

given in the problem. Your curves may look quiteé different. ) ’ =

. . . APPENDIX 2 _ ~
;, RATES OF CHANGE* '
Yy

B . ~
1 -~

,. : Objective 1: To be able to estimate numerically the

L . ¢ A . .
, . average rate of change of a furetion given

by a formula.

40 X 0 : ) X Q XL
dem tlope negative . slope zero In Appendix 1, all our information about rates of
N * change dame from graphs. Wg now explore how to find the
L ) ' verage rate of change for functions given'by a simple
A . -

, . . : AP ormula.; The function we use is one you’ have probably K
Y . , seen before. If an object is dropped, the distance, h,’
. , . . v . which it falls in a time t is given by b ’
. 'y .
N : _ h = 162,

.,

. . ) . Tt is important to keep in mind when we'use this formula

- . . that t must+be in seconds and that N comes out in feet.

T . o , - { , For e;ample_,.to-fi.nd out how. far the object has fallen at
' - .t =1.5 sec, we calcul\ate ) v v

. ) ' . ' h = 16 x (l.S)2 = 36 feet,

j . ’ / . . Figur‘e. 2.1 Shows a graph of this function.
4 . L]

- .
v .. o~ ~Calculation of an Average Speed of Fall
S ‘ . . y ’ . ' Let, us compute the average rate of change of from

t) = 1.5 sec to t, = 2.5 sec. This i really the average
- . /' ] o spegfd of fall and can be calculated frém the fermula

. . _ . . \ .. an - . ;
) . t % . \\' (a\(e.rage speed) = it )
LN . \ - . .

’ . where Ah is the distance fallen in the time interval at.

U . . - . .0 ’ See Figure 2.2. \ .

] . . ...
. ) ' . P . ‘v As usual, we can write

.\ . . \
. ‘ * = -
. . ) Ah = h, - h

- 198 . . * .7 *Adapted by the UMAP Project staff from Differentiation, Second |
. \ . . ,. : Edition, 1975, Project CALC, Education Development Center, Inc.,
Newton, Massachusetts, pp. 63-75.
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where h1

»
.

is the value of h when t = t1 (which is 1.5 sec

this example) and h, is the value of ﬁ‘when t =ty

2.5 sec in this example). We also have

so thét
hy -y /

(average speed) = €5—77€I . ' '

We have seen equations like thiégin the previous
What is new here is that now we-can calchlateﬁh
from a formula 1nstead _of estimating them from,a

Thus since h = 16t1,'we have ‘» N W

~ Y -

hy = 16t7 = 16(1.5)% = 36 feet.

In juge‘the same way,

“~h, = 16t = 16(2.5)%

100 feet.!

~ﬁ\ccofd’ingly‘, : N .

. . = .
. RN Py

‘e

oot : h, - h
.. (average*speed) - Ak 2 1 _ 64—ft

At t7 - t1 1 sec

= 64 ft/sec.

Objectkive 2: To be able to‘approxihiﬁe the instantaneous o~
rates o'fychangéd of a function giyen by a 1
formula by takzng the average rate of change

over smaZZer and smaller intervals. .

The procedugze described in the previous section is ) {
The - -

’ v

useful when we want to .calculate an average speed.
result is,almogt certainly—more:preaise than any we could
read from a graph. But what we.are really qftef is not the
average speed over an 1nt€rval Bome par-
tzcular znstant of time (what we have called the instantane-
In Appendix 1,
speed 'by finding average speed over shorter and shorter .

What we did theré>can be summarized in the fol-

but the speed a

ous spved) we.calculated instantaneous .

intervals.

-

lowing way. e : .

196 -
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‘ . L. . ) * 3 .
{/i,% +The process that defines instantaneous speed may be \ . TABLE 1 .

* ﬁ@%_xpresse‘d:in.compact form by the following word equations: o Calculation of Average Speed g
. . N : *% Over Shorter and Shorter Time Intervals
- average "_ Jinstantaneous . . .
,value‘approaéned by [ speed ] as At> 0 [ speed . ] ' X .
o . . o (2) (3) (4) () . (6)
or . . " . . = . -
! . ’ ! b ' . . Time at Length of _ Time at | Height at Change Average
value approached by [Vav] as At+0 = v. Beginning +. Time =".€End of End of “in Speed Over
b . . - of dInterval Interval Interval Interv .Height Interval
Numerical Approximation of Instantaneous Spéed . © (sec) (sec) ~ (sec) (ft) (ft) . (ft/sec)
] . . . . t + At = ’:2 h2| ) " Ah Ah/At
We will again approximate the speed of a falling body R . _
 at t # 1.5 seconds, but this time we will begin with the ) {_5 _4",_00 = 2.5 | 100 6y . 64
." formula for distance of fall as a function of time, h 2 16t*, ' ¢ff§ + 0.8 = 2,30 84.64 kg.sﬁ‘ 60.8
instead of starting with the graph as before..3 . , - 1.5° + 0.60 = 2.]0 70.56 <. | 34.56 57.6 ‘
Throughout the. calculation, h1‘= 36 ft and t; = 1.5 L 155 + 0.ho = i _

. sec. Table 1 shows the results. The first column gives the 15 + 0.20 = 170 h6.24 10.24 51.2
time at which the instantaneous speed is to be found, 1.5 1.5 + 0.10 = 1.60 4b.96 ‘ 4.96 ~ 49.6
sec. « The second columry g1ves the interval of time over, ~~ "_5 + 0.00 = 1.5 36.4816 0'-1'8"? ) ?8‘16

TWhich the average speed isato be calculated. As we move ) 1.5 . + 0.001 = 1.50 36.04802 | 0.04802 48.02

“ down the table, we let the value of At get smaller and : ] ] .

1
smaller. Column 3 gives th value of f = t1 + At, which is

- P . . - - P} _
the time at.-$he end of the—ipterval. Solv1pg-th1s simple putting At = 0.80 we find't, = 1.5 + 0.80 = 2.30, the num

ber given-in the secbnd row of Column 3 of the table.
'

equation for t, gives ' . . N . / L
. g . . Column 4 of Table 1 is h,, the distance the obJect has
. ’ t, =t + At "fallen by ty = 2.3 set.’ "This value 1s-obta1ned from our-
. ‘ ) ' - . formula for h in ft: *h = .
In our, calculat1on t1 is always, equal to 1.5 sec, S0 we mu or t .terms of t h }6t . Thus when
. t=t,= 2.3 sec, we get & ! v
can write th1s last expre551on . S : Co.
A 'tz—= 1.5 + At (tz and At'both in seconds)..' ) “h = hy = 16(2.3)% = 84.64 ft . :
—-— - - . . N ’ * ‘
Calculat1on of Row ¥ of*Tdble 1 . and you can see this number in the second row of Column 4

These- numbers, as we11 as those we will calculgte next, are
shown 1n Figure 2.3, wh1ch is exactly like Figure 2.2
except that it corresponds to At = 0.80 sec rather than 1

. Follow fhe calcukation of the numbers in Table 1 by
exaq1n1ng in detail the second row (which is typical of all
rows in the table). Columnfi of.this row is, of cou

ec. . -
ty = 1.5 sec. In Column 2 of the second row we have the sec. *, a

number 0;80 sec. Th1s mearis that the &ﬂcond ?ow corres Column 5 gives h which, by definition is

) At = 0.80 . 3 th .
ponds to the cho1ce_ 0.80 sec Column g1ves e Ah = h£\‘~h£~ ‘ , ,
7

» value of t, which is gotten from the last equation above:

*
N
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Since h1 = 36 feet throughout our calculat1on this equat1on
) ¢

becomes\\\ . , ) . .
"Ah = hy - 36 (h, and 4h both in fedt). ..
From the previous ehlculation (Column 3) we know that

h, = 84.64 ft. +It follows then that for row 2 of'qu}e 1

2

4
.

. Ah = 84.64 - 36 = 48.64 ft o -

and this result appears in Column 5.4

The last column, of the table (Column 6)¢is the average
. speed of the falling object over ap intérval of time | 2

~ At = 0.80 sec' beginning at t = El = 1.5 sec. Using

Ly
s 4

(\ T 19g - .

»
*
) a

At = 0.80 sec [golumn 2) and Ah.=348.61'ft (Column 5) we
I8
M ge‘t C\ \ , . \
. * Ah 48.64 ft _ o’ .
.‘ \: -A—t m‘ 60.8, ft/seC., .
Y
. 'the number 11sted in Column 6 of Table 1. oo A-35

\ / ——— - - . -

A1l of Table 1 is made' this way, each value of At
(Column 2) being chésen smNler than the value in the pre-
vigus row. Spot check a fz:>of the numbers in' other rows of

‘?able_l to be sure you understand, how each is.calcula}ed.

N .
»

Exercise 1. The fourt‘h row of Table ) (corresponding to At =

0.40 sec)

has been left incomplete. Follow the procedure discussed above and

fill in the row. Consult Table 2 to $ee'if the value you obtain for

© Bh/At s correct,.

-~

»

[
’

Results of the Calculséion-as At > 0 ‘ -

. Now that we have Table 1, we can make 2 sécond;
—simpler table

much
by omlnt1ng everythxng except the 4t and
Ah/At columns, as is dorfe in Table 2.
jnterested in the average speed, Ah/bt,
smaller values of At,

Since we are,

for smaller. an
these.are the imbortanf colupng of
Table 1; the other columns were put in only to assiSt us in
making the calculations. g

3 .
.. TABLE 2 © '
. The "Average Speed ) ’
N Over Shorter and Shorter Time Intervals
< 3
* Length of 'Average Speed :
- . . Time Interval Over Interval
(sec) (ft/sec) . v -
At T bh/bt
-, .
£ 1.00 64 ) .
. 0.80 60,8 N
' ‘0.60 * 57.6
. g 0.40 54.4 -
’ 0.20 . 51.2
) 0210 '109.6
= 0.01- 108..16
. . - 0.001 48.02

“/

)
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The values of average speed from Table 2 are plotted
» in Figure 2.4. By looking at either the table.or the

graph it is possible to see that, as At grows smaller and

a2 3 A ’
Lengthof Intérval At

Figure 2.4,

»
Ah
3t 2 At + 0. » ‘ . .

']Zl{j?:‘ . 22()1_ . -

. .
Aruitoxt provided by Eic: . .

- . .
. . \ - . .

- A .
Some values of Table 2 plotted t§ see what happens to

s - apgféahces 0, Ah/At gets closer and closer to a vdlue at
T " _or near 48 ft/sec. In a word equation: ,
r" , -
- value approached hy %% as At+0 = 48 ft/sec. "
) ) ’ Y
Since we alteady have stated that \
Ah : instantaneous N
5 = A =
value approached by as At >0 speed v,
- - ‘ ’ * * ° ' *
the value
I . I4
“~ . N ’ a
- . v:= 38 ft/sec . . =
! is our approximation f&r the instantaneous speed of fall . «
at 't .= 1.5 sec. - T
. ~ t [ ~
' 13
- 55 ve . )
om ' ’
s sec 3
At T
. 54 o
. . Average 33
53 N
‘ over .
. irvterval \
52 4 - T
.
~n
PR 51
’\ -
’ 50
. HHH '
49 BHH
. ’ a0 .
H
@
A} . H
L 4 w % E
a7
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Exercise 2.

Compare. the results of the calculations shown in Table 2

with your calculaikbns of average speed using the tangent line done °

in Table 1 ofAppendix 1.

Exercise 3.

Use the ?ormula h

=l6t

[

o

and the numerscal method Just

described to find (at least ‘approximately) the speed of the falllng

object at t = 2 sec.
t\ .

Exercis€ 4 (Calculator Exercise),

e

~

I¥ you have a calculator at your

disposal, redo the.calculation of Exercise 3 to find the speed-of the

falling-object at t = 0, 0.5, 1, 1.5, 2, 2.5, 3 sec, eto.

speed as a function of-t.

\

Plot the

What kind of curve |s‘your graph?

Py ?

Another Example:

.

Calculation of a Slope at a Point

Let -us try to find the slope pf the graph of the °
You will see that although in

function y = at x

= 2.

- the previous example we calculated an instantaneous veloeity,

and in this second example we w1Ll calculate a sZope

and

the’ prOcedures involved are 1dent1cal .

In the last examble, we calculated TrHgtantaneous

'

velocity from average velocity.

b))

In this example, we calcus

late the instantanequs rate of change of & function (the
slope of its graph at a point) *from the average rate of

change.

Definitions and pracedures are identical and may

be expressed in, the follow1ng form:* N !

value”approached by

or

value approached

~ Figure 2.5 is a graph of the function y = x3,
sHould make a few calculations yourself,
the curve in Figure 2.5 really is a graph ofty = x3,

ure 2.5 shows,y =

you draw a graph of y =

from 0- to -57)

)/ Co . [agerage

rat)of] as Ax +0

thange

14

by [AX] as Ax=+0 =

48X

. \
indtantanepus
rate of change

A

A

»

slope ‘of curve
at a point

You

and verify that N
(Fig-
#3 only for poeitive values of x. Can °
x3 for negative values of x, say
A58

.

. 22()22 p .




3

1T

T
1T
T
e00ns
\ T

18 o004
1
Sans

.
13
19001

soans
roens o

X

1 2 3 4 ' 5

Figure 2.5. Graph of y*= x3‘

. Coa

Numerical Calculaijon of the Slope at x 2 2

L4

Ax
- . ' N ‘
The results of such a calculation are shown in Table 3..
This table is made exactly the way we made Table 1, so we:
will not discuss -it in detail, but you should spot check a
few of the mumbers. (We have rounded off the numbers in

Table 3 sosas

o '’keep no more than two figures after the
Ax.) ¢ S

& ’

‘We now have a méhod for finding instantaneou’s rates "’

decimal point in

To find the slope of the curve in”Figﬁre 2.5 at x = 2, -
we proceed as we did above in calcuiating_iqstantaneous
velocity. That is, we calculate - . -

. ay _Yz2° "N
- . ax  x, - Xy - s ’ ) . '
. ‘ .
for smaller and smaller values of Ag (yhere_Ax =X, - xl). )
In our example, X, = 2 and so Y, = 23 % 3. Hence, -
ay Y2 "Y1 _ Yy -8
! s el v

Approiimating the Slope of y = x

TABLE 3

-

3

,at x = 2 by Letting Ax Approach Zero

X+ Ax N X, y(2 Ay = Yy - 8 Ay/bx
2 0+ 1.0 = 3.0 27. 19.0" 19
2° + 0.50 ° = 2.50 15.625 7.625 15.25
2+ 0.20 = 2.20 | 10.648 2.648 13.24
2 + 0.0 = 2.10 5.261 1.261 12.61
2+ 0.05 = 2.05 8.6151 | _0.615 12.30
2 -+ 0.02, = . 2,02 8.2424 0.2424 12.12
2 + 0.0l =

2 %+ 0.005 =

\

[4

-~

Exercise 5. Complete the last two rows of’ Table 3 to verify that

Ay/Ax approaches 12 as Ax approaches zero.

v

Exercise 6. Verify the answer of Exercise 5 by drawing a line tan-

gent to the curve in Figure 2.5 at x = 2, apd measuring its slope.

-

Exercise 7. Adapt the method used above to find the slope of

y = xz at x = 1.

.

-

* of change, Speed, or more correctly instantaneous‘;ﬁéeﬁ, is

Use the methods of this unit to
at x = 0, 0.5, 1, 1.5, 2, 2.5, and 3 sec.
What kind of curve do you get? ’

Exercise 8 (Calculator Exercise).
find the slope of y = xz
Graph the slope versus x.

. L]

Some Further Comments

- ~

It may have seemed that‘we found both instantaneous
speed and the slope at a point in a rather roundabout way.
In each case we calculated an average rate of change (Ah/At
or A}/Ax) over an interval (At or Ax) which got closer and
and closer to Zero. BJ% why be so sneaky? why not just
set AT or Ax equal to zero instead of letting it approach

.

zero?

-

QO ises.

L

“ .
PP 7 v eric
5 >

4
LS

an example of this. Practice this method on the next few

ERIC 203 ° o
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Lo
':\ . ' K
r,‘/ To answe%'th1s quest1on, consider -the kind of T
f" measurements we make in order to' get the numbers d1splayed

o

CERIC .~ .

B 1701 Provided by ERIC

: 1n.Tab1e 1. Put 4in its s1mp1est terms, we determ1ne the
d1stance, AR, wh1ch an obgect falls in a t1me At. We then
ealculate Ah/At. Putt1ng At = ¢ directly wouIdJmean that .

', We would Mave to determine the, distancef the object falls

' But in zero time

» -

¢ " in’a time "interval" of-zero length:
the obJect moves zero distance so.that corréspending to

- At 0, and the Tratio Ah/At = 0/0

The additional row for Table 1 ‘which would eorrespond to

s

= 0 we would have Ah =
this- calculat1on is. ‘shown 1n Table 4' ‘

TABLE 4 : x

. - An Additional Row for Table 1 < '
-- . . Corresponding to At = 0 ... -

LY
¥ o 3 [
L4

tz(sg;) . hz(ft) Ah(ft)

« . : . & °

. * ‘3

0 .
1.50 3? . 0 IR

- .' 8

Thege are tw&'things wrong with the "result" 0/0.
First, i& same result we would get for therobject

.whatever its true speed might be. Whether it is moving so
‘fast that all we see is a blur as it passes, or so slowly
tnat it is at

-
» will be 0/0.

- . guish between

the proverbial "snail's pace," ouf "answer"
Obviously a quantity whfch does né6t distin-
someth1ng mov1ng rapidly and someth1ng

- moving slowly can hardly be used as the deffnition of °

instantaneous velocity. ) .

The second difficulty with' 0/0 is a mathiematical one.
0/0 is, mathematically speaking, a meaningless symbol; it
’ is impossible to ascribe a unique numerical value to it.
v

~ All this helps to exylain why we must "sneak up" on
the instantaneous veloc1tf by detefm1n1ng the value Ah/At
approachea as At approachea zero.. We can summarize our
$‘ z v

“2\05..\ o : :
T ’ ,.3; ’a " .

Q

4

A-41

)
N\

diséus;ion of instantaneous velocity by
- ‘ -
Ah . .
I vV as At + 0. )
Here v is the)1nstantaneous velocity at
time, At is an interval which begins at

is the distance the object méves during

~ ANSWERS-TO ‘EXERCISES

. -

-

saying that

some

that

that
/

specific

—

h Ah

2

Ah(&t

1.90 21.76

57.76

544

3 °
\

2. The two results should agree except for small errors in finding

-

slébeskby the tangent line method.

.

time, and Ah
interval.

3. At t =2 sec, H-H

Ak )

ﬁnn(uamd»

100 o
= 64 ft/sec. - (ft/sec) T
. o 90"
4. The graph is a
straight line. 80
y
» 7
R T /
- w 3
N A
* .50.
' Y
° " 40
\ i y
-~ M 30 Yy
4
* A
¥ < -
20 ! ~
. . 4
- 10 A
' 0
. ¢ 1 2

£
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- 5. - = ——— ' -APPENDIX 3 ) "
ox, + Ax = x y Ay ¢ 1. Ay/Ax \:\\\\\. ) v
1 2 2 . ] O . . , - .
. = ’ Differentiation Formulas from Calculus
, 2( + 0.01 = 2,01, | 8.120601 0.T120601° | 12,0601 . -
. § : N i i i T
2+ 0.005 = 2.005| 8.0601501 | 0.0601501 .| 12.03002. oo If u and v are differentjiable functions of x, tflen\ )
A ‘ * + ot v the sum and product functions, u+vandu- v, are
- i . o r ‘differentiable functions of x, and their derivatives are. -
: 6. The -two results should agree except for smal errors in finding given by-the formulas . ) -
slopes by the tangent line. method. ~ . d _ du _ dv . . '
. i -e . 75;(u +v) = x> (Sum Rule)
A s ~ . ' . \n .
N . ‘ . and .
X, + Ax c o= x, .Y Ay=y, -1 [Ay/Ax - - . d oo dv du . |
‘ 1 .2 . 2 2 ) a;{uy) = ugg * UHZ' ) . (Product.ﬁule) |
1 O?I = 12 1.21 0.21 2.1 ) > Further, if v(x) # 0, then the quotient function u/v is
1+ 0.0 ="' 1.0 1.0200 | 0.0201 2,01 ° . dif%erentiable at x, and ips derivative is. given by the
1 .+ 0,001 =< 1,001 | 1.002001% 0.002001 | 2.001 - formula : \) )
. - . — . . d[g] - ¥(du/dx) - ufdv/dx) (Quotient Rule)
\ . X{v ve . . R
-, . . L. . N - > .
. 8. The graph is a straight lines /} Finally, if y is a differentiable function of u, and'u -
. * = » . . . - .
. Fuope TEREEET] 3 , is a differentiable function of x, then y is a differen
\ 81y E e BN tiable function of x and .

o 1 Thulo::of -+ . ‘ .
. y= - .y du (Chai
. = . . A ain Rule)
X 5 : \ X du " dx .
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The formulas for the derivatives
functions® of X are listed below.

formulas for the derivatives

APPENDIX 4
-

. du
-sSin u a;-

sec? u %%-

of the trigonometric

with respect to
x for trigonometric functions of'u where u is a
differentiable function of x are listed

sec X tan x.

-CsC X cot X,

) du
- 2 ——
csc? u g
sec u tan u g%.

2]
-Ccsc u cot u
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V. ANSWERS TO MODEL EXAMS -

s

' AgsWerscto Model Exam from-Unit 158
g X

.
C ety
. e e

2

<

PR A i Tox: Provided by ERIC

’

Calculus is not needgé. *The answer is -
h = 1200 tan 0.3 = 371.2 meters, ‘

? -
. L e ¢

Calculus is needed.. The first and secdnd

. derivatives.of voiage function“will be fownd .

“ rd
and the second derivative test wil} be used.

. A . o
The maximum *voltage is v = 1, when t = %.

Calculus is not needed. The formula for the

area of a sector will give approximately 51 in.? .
: ST .¢‘

falculus ig.neededf The area of the triangle,

A=

trigonometry.

18 sin6 cos 0, is obtained by right triangle

Then, as in problem 2, the second.

derivati&e test will be used. The answer is
o =3 ‘ o
= 4._ ~ . ot L 4

. .’ s
A problem similar fo any of the four problems

given in the unit or in Problems 2 and 4 of this

exam would be an acceptable answer.

'

<

L 7

ANS-1 -

= ' *

© { . . " . R

" Answers to ﬁodel Exam from Unit 159

. d . _ )
. 1. a I (sin x) = cos x ‘
b d (cos x) = -sin x ’
3 '. a?(. -
2, radian. ‘
3. Yes. The fesult wif;\hot hold if degree measure
is used.- &
. . v r 4 »~
4. a. 0.7 , ' /
b. -0.9 . - : ’
5. N ] {
Ax Ay = sin(0.4+ Ax) - sino0.4 Ay/Ax
< 5
.1 .0900 .900,
.01 .00919 919 |
¢
001 - .000921 .4 .921
0001 .000921 o .921
. -.1 ! -.0939 939"
5-01 . -,00923 ‘923
-0 -.00092¢ , . A 92100
-.0001 -.0000921 2921~
A ~ &z X
R ‘/ ~ \ Rl .

The value of the derivative y = sin x at x =0.4
is approximately 0.921.
‘o

* ¢ -

s . .
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Answers. to Model Exam from Unit 160 s
S - — —
*’, sip h . . ) .
» 1. =g is saindwiched between two other expressions,
k] LR ¢ .
each of which has a 1imit of 1 as h + 0’.
. cos h -4 Lt -
2. lim K = 0. .
: L R
-
17=n . . - .
3. cos (180)
) o 3973 . Lo .
, 4, sin (180) - i
2 . -] . - '
%  2x cos (x2 - 3). i <
; C ’ ’
6. 2 cos x - 3 sin 3x. . N , :
. v *
5 . . .
<" . % 7, <2 sin x cos Xx. .
. 8. -sin?x + cos?x. : . , v
~9, -(6x - 1) sin (3x% : x) o
N - -~
10, cos®x - 2sin?x cos x . . . v
., 11. -cos x#c. .
12. %;in' 3x + c.- -
‘ - M «
13. 5X + 2cos X + c. ) ‘ .
. dF _ -KW (Kcos® - sing) - ; E
4. 5= =L &
. . (K sin 6 + cos'@)
vt L - ,
o .
’ . Rl2 ’ ANS-3
- e 7
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~Answers to Model Exam froim Unit 161 v .
4, d y Cos X - cos in in x)

. _ sin x 0S €6s X - sin x {aisin x
1. a—;(tqn x) = a‘(co& x) 2 (3sin x) ~-
o ‘cos? x4
. K . . .
- - 2 . 2a .. ) 2{ -
. - Cos® x + sin?*} _ 1. . sec? x.
v N o ’tosz X . <os? x .
@ - L
de, . Sin X » Quc -1 cos -
2 - ~ Ix .
gxfesex) = x(sm %) - 2 < N
.. sin? x
P & N
-cos X 1 cos x
= = — - = -CSC X cot X.
Ll - £
% . sin? x S X sinx
N > n s 77 * |4 /
. . -
>3, %= -csc? x, e’
. S .
":d » A}
4-& Efx = X tan-x. . . . T e
e x 1
s v 4 . . . @
5. EIX =3 3x + S5).»
, Ix sec (3x % 5).» . .o .
y o N i *
d : .
6 a-y-=2c052x+2xsc2x2. . .
X, U. 59 o h ¢
Py o Y T , @ -
7 '_d .5 X sec? x + tan x. . .
x 4
. . ) -
. cal_x - -sin X (2 + tan 2x) - 2 cos x tan 2x :
. . X~3 N 2 = . . -
N , (1 .+ tan 2x) gk
4 o ’. . - - -
1'° ’ /‘ : - - ° o Y -
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Unit Questionnfire

Check the choice for each questiof thawtgomes closest to your personal opiniorx,

-

1. How useful was the amount of detail in Ehe unit? RS

Not enough detail to understand the unit

. Unit would have been clearer with more detailﬁ

- “Appropriate amount of detail )
Unit was occasionally too detailéd, but this was not di§tract1ng
Too much detail; I was often, distracted

<

' .
2. How helpful were the pioglem answers? .

Sample soLupions were too brief; I could not do the intermedipte steps
Sufficient information was glven to solve the problems . .
Sample solutions were too detailed; I didn't need’ them .

Y L i

Except for fulfilking the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

- A Lot . Somewhat . A Little . Not at all .

- ~
¢ »

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math o6r sciencé course?

Much Some;hat About . Somewhat Much = *-
Longer Longer the Same . Shorter Shorter

5. Were any of the following éarts of the ulit confusing or distracting? (Check

as many as apply.) : \ Sepr

__Prerequisites R ,
Statement of skills ard concepts. (objectives)
"_Paragraph headings . - : -
Examples * N :
-Special Assistance Supplement (if present’} - .
Other, please’ explain ' L -

= v

' . ‘\ <Q

Were any of the following parts of the unit particularly helpful? (Check as many
as apply.) , R

___Prerequisites |
Statement of skills and concepts (objectivés)

-

-

—

Examples ,
Problems . -
7 Parégraph.headings
Table of Contents ¢ ,
- Special Assistance Supplement (if present) ' .

Other, please explain . -y

Please deécribe anytRing in the unit that you did not particularly like.

yd

“Please dei:ribe anythihg that fou found particularly h%}pful. (Please use the back of

if you need more space.) . .
’ &
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. © . 1._ INTRODUCTION .

As you know, there are times when we have information
about the derivative of a function and wish to conclude
L
from it informatiod about the function itself.

. N

- DERIVATIVE FUNCTION .
. ° . Veldgity Distance '
‘ Acceleration Velqgity ;
~-Marginal cost Cost '
" Rate of growth Size of the Lt
. of a population _ population N~

The reason tHat we can often-succeed in determining func-
tions from their dex1vat1ve9 is that whenever two functions

. have the same derivative on an interval,the functions dif-

fe? only by a constant on the interval. Thus, if we can °
find even one function that has the gaven der1Vat1ve, we
know that the functioh we seek cannot d1ffer from it by more
than a constant. The basic fact is this:

IF £f' (x) = g'(x), for ALL VALUES OF x - -
IN SOME INTERVAL, THEN FOR SOME CONSTANT o
£(x) - glx) = Cor £f(x) = g(x) ‘ C

FOR ALL VALUES OF x IN THE INTERVﬁ;

O

FRIC L ‘ :

o / 1?
. .
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‘For every value of x,
the two functions _
)‘4- f(x)l= x? + 1 and yEx o+ # ///s’|°pe 2x
- g(x) =x% -2
have'the derivative y =X :
fF1(x) = g'(x) = 2x. g ol
Notice that . 47 slope 2x
~ (x) = g(x) +3
for:all x. The .

. value of C in the
rule stated above
is C =3, 2
To get the graph

- - of f, we may slide the . -
2

graphof y = x* up 1

. unit. To get the

-
. \
graph of g, we slide it down 2 units. The three graphs have the same

.. slope at any x.

5"
‘Functions whose derivatives are equal only at isolated
points, however, do not have to differ by a constant.

EXAMPLE 1. The difference of the functions f(x) = 2x? and

‘ “g(x) = x? is 2x* - x? = x?, and not a constant. However, the
‘ derivatives of these two functions have the same value at x = 0, as
. you can see in the following table.
THE THEIR THEIR DERIVATIVES
FUNCTIONS DERIVATIVES AT x =0 .
A
A f) =2 fi(x) = bx ° S
o ) g(x) = x? g'(x) = 2x
Exercises
1. Find two values of x at which the derivatives of f{x) = 2X® and
g(x) = 3x® are equal. .
. , (.
B , . - .2

- ERIC

< .

i

A
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2. Suppose thgt f(x) and g(x) ;re two fudctions that have derjva-
tives on some intervél, and that ‘
. . f(x) ~ g(x) =¢
¥ . on the interval. v <:
. a) Differentiate both sides of the preceding equation
to show that differentiable Ffunctions” that differ by

S s .
a constant on an interval have the sBme derivatives
(
" ' on the interval. .
. . b) -Show that . !
2x3 - 3x2
2 v I
is not constant on any interval. !
) 3. Find two more functions whose difference is not a constant
but whose derivatives agree at one or more points. .
. In Exercises 4 and 5, use the coordinate axes provided to graph
S .
the given functions.
- v 3
4. Graph the lines Y =X, ¥y=x~2 AY
: -
. y =x+1, and y =x + 3. . .
. . .
. * -
: ' N s 1+ .
bt s ) 1 3 X
~ T% T T t i 0 + T t T 1~
« . . i I s
‘ -
N , , . .
M 1% h .
% - A
\ ) ¢
. .
¢ L)
[N N 1]
. 3 ¢
- - . - B
< . .
s ~ -
N ¢ ‘ v ’
. 3 " '
. - » ¢ N . :Z
Q N

[Elz\!(:‘ . ‘\ . N . . . .

. &
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5. Graph the cubic curves Ay ' ;

) y =x}, y=2x®-0.6, T
.and y = x* + 0.4. ) 1
\ _ "
~ 4 -
- ) x
v —t—— ——t—t—t>
- 1 ’
T \
- . 2. INDEFINITE INTEGRALS , °
¥ 4 . .
Since the derivative of S5x? is 10x, any function f(x)
that has-the derivative .
% © N
. ¥'(x) = 10x o -
must have the form,
- f(x) = 5x* + C.
for some constant C. Without more information we ca
learn the value of C, but at least we have determined f up
to a constant, as we say. We call the family of functions
5x* + C the indefinite integral of 10x, and we show this by‘
” wri'tlng o -
f'10x dx = 5x% +.C. 5
N . I3
The constant C in this formula is called the constant of
integration. ! ' g M ,
. Many--indefinite integrals may be found by reversing
derivatie formulas weg already know. Here are some examples.
- v \ .
’ .4
! . . }
L 222 : )
"‘. Q ' coe - ) . N
:(l, EMC - . . &h 3N ’
o o : )




. - . -

DERIVATIVE /COMPANI ON

FORMULA INTEGRAL FORMULA + °
B TN 4 (kx) = k . 1. &k dx = kx + C
¢ dx . . . .
N A A N LY ‘
. dx

If we change all the r'§ iﬁ\formulas (2).and (2'3 to |
r+ 1, and theéh divide both sides of the formulas so

- obtained by (r + 1), we get formulas (3), and (3') shown
be%pw., Formula (3') tends to be more useful than form-
ula (2').

' + s e r+1 . .
3. d (xr ! r 3. Ixrdx=5—+c .

a0 =) = x r+
dx r+l)

“-Formulas (3) and (3') don't work when r.= -1, but the ~
next formula takes care of this case.

) -
4, d 1 N R
a;(-(ln |x|)=; . I-;dxsln x| +¢ !
5. d Xy X X - X
-d7(e) e . 5. Ie dx = e +C
. °Notice how nice'a fumction eX is!
, ) .
< EXAMPLE 2, *
. f-s d% = -5x + C '
- Ihx’ dx
Ix3 dx = .
\ "
EXERCISES
- , Complete the equations in Exercises 6 - 21. "
6. Jh dx = 7. I-zs dx =
j dx = 17x + C 9. I dx = -3x + C
I)s dx - ’ 1. Ixsdx =
\
]
.. ] S
. v . .
l. )
Q . ’ T 23
" L ]
*ERIC . .
P oo : < .




. —
20. . dx = -103.5x + C

In Exercises 22-25, the letters a, b, k and m are constants.

Complete each formula.
>

22. Ik x = 23. Ia dx =

ZQ.I T odx s mx + C 25, I. dx = =bx + C
Y

So far we have used x as the only variable of integration, but
other letters are commonly used. Complete the equations in
Exercises 26-33.

26. 132 dt = - -27. I
_— L

28. IPZ dP =
)
30. Iss" ds =

Y L .
32. e dy = \ 33. o dR=1n |R] +¢C

—_— —_ .

In E'xercis%%-ﬁ, the letters with subscripts are constants.
Complete each formula. *,

34, It, dt = 35. ! dt =‘32t°t +C
L]

36. Iao dt = = 37, Ivo dt =

dy:y°y+c

R A v 7 Provided oy Eric




. L J
. In Exercises 40-43, use the coordipate axes provided to graph
the. thrée curves selected from each famHy

40. Graph y = -2x + C .
p for ¢ = 0, 3, and -, by .
. ° .
. . . ‘ T
. -+ ¥
v N 5 X <
s s ————+ 0 —— ¢ 4
. 'S 1
. . l .
s ' N T
. . .
P ¢
. ]
. . x? '
. , AL Graph y = 7—+ C for v Ay
- / 7 T
s €=.0, -1, and"f . . ,
, ‘ 4
IS . ~ L I"\"*' 'X/‘
F] oo x'
+—+——+—+ ——t—t+—>
1 0 2
. ¢ + \ . '/
t - 1 M S
S @ °
. I3 Y 7
- - .
- 225 -2
. ~
» » ‘e
° * - * : \"
.U




42, JGraph y = e® + € for
C*-2.718, - 1, and 0.

o
o
E

=1n|x] +¢, x#0
0, -1, and 1.

-

' PR ) N
3. INTEGRALS OF LINEAR COMBINATIONS OF PUNCYIONS

. ’ -

The rules about differentiat}ng sums of functions

and'emultiples.gf functions lead to the following two
integration formulas:’ . )




’

£

— EXAMPLE 3.

" ERIC

PAruntext providea oy enic I

i

(6) suM F;ULE [f{x) + g(x)] dx + Ig(x‘) dx

-

13

k f(x) dx = k If(x) dx

- N
k any constant).

.

(7) SCALAR MULTIPLE RULE 4 f
] (

The fact that the integral of the negative of a function’ ‘
is the negative of its integral is an jmmediate conse-

quence of (7). We just take k = -1 to get v

-‘f(x; dx = [-1 « f(x) d; = =] « [f(x) dx = ~[f(x) dx.
A\ Y

N
N

. 3
( I-x'2 d‘x&= -Ixz dx = - XT-'P C

The sum and scalar multiple rules are often used

together, as in the next example. .
r 3 <
EXAMPLE 4. . s

[or - Lo oray = [yar - [Fay + foor g more

s N
= YS— - 1n |y| + 9y + € SCALAR MULTIPLE RULE

. L

!

. /
In general, the sum and scalar multiple ryles aliow

us to break problems into parts we know how to solve (we
hope). .o

7 ’
When we integrate a sum or difference of functions; .

one constant of integration is enough to generate the whole

family of possible solutions. i
EXAHPfE 5. - . c .
. . I(3t2~+’|2et)dt = I3t2dt + |2Ietdt :

-~ - e, e t
| .= t12e +C.

We do not need to wri%gﬂ;he answer as t® + Cy + 12et + 12C,.
The formulas t?7+ 12e® + C and t? + €, + 12¢t + 12C, may

generate different functions for different values of the C's
but the family of functions generated by either i?rmu&a is ”

-

. . 9

~

. F} . ¢ e s
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' ~2 - >

.~ the same as .the family generated by the other. We are

therefore free to use the simpler formula, which.is what

we do.
EXERC I SES ——— o,
Complete the equations in Exercises 44 - 55, .
N . 2
Ly, I(x+ |)dx=xT+ BRI I(lo - x)de = .
2 ~
k6. I dx=x2—-x+c 47. I dx = -1n |x| + ¢
. ¢ 3 .
O 48. I -edx = 49. I-tzdt = -t
50. I(mx + b)dx§= 51. I(3y2 - Syldy =
52. I ds = 5% - g3+ ¢ 53, (,x-lex)dx=
= 773
54. I(%-§-+hez)dz= 55. I dx = x? - x2 ¢+ Jx + C
.o -
4.. FRACTIONAL EXPONENTS AND NEGATIVE EXPONENTS -
In this section we return to'formula (3') of °
Section 2, which we now call the power foﬁ;§Za. T .
X - . r+1
(8) POWER FORMULA Ix'dx - "_.+.|_ , T # -1
-
) We do this to point out that the exponent r in the
formula does not.have to be positive. It also does <%
not have to be an integer. .
EXAMPLE 6. .
i o o oo USE THE POWER FORMULA
£y < WITH r %},
-%XT-FC SIMPLIFY N
EXAMPLE 7. -
1 ldx = [x~%dx WRITE THE INTEGRAND WITH A
xo % i NEGATIVE EXPONENT. USE THE
POWER FORMULA WITH r = -4, *

10

Q v

ERIC . :
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—_ |""3§+C -
)
EXAMPLE 8.
.15 - - |
I_;E-dx ISIx—zdx
= -1§ Ix- dx
w
' *ox"

ﬂ-l-s— +C
X

INTEGRATE
POSITIVE OENOMINATOR
POSITIVE EXPONENT "

/

USE THE SCALAR MULTIPLE RULE
TO SIMPLIFY THE INTEGRANO.

.

WRITE THE INTEGRANO IN EXPONENTIAL
FORM. TAKE r = -2 IN THE POWER
FORMULA.

A
INTEGRATE

SIMPLIFY

POSITIVE EXPONENT

EXERC ISES

Complete the equations in Exerclses 56-80.

’

56. It*dt -_

I/_dx =
60. I “12/5 ds
62: I;';-

64, I

N

% [
'68. [
70. I
7. I

7h. I(xz + -—)dx =

dx -—?4'0' C

dt'—T+C

~<

dx

*1—

dx=x+ In xl +C

4

L s

3

.dx = 2x° + C

1. [
/
59. Is.& dx= ___*

1r

[ @ -

\




76. I dzee’tin|z| +C  77. I(e" - ;},—)dx -

200 ‘ ~602 .
78. I—z— dz = . 99. I“Tr dx = -~
80. I—,} /5 dy = . - ’ .
- ¢
.- 5. DIFFERENTIAPE TO CHECK
3
To ghe.ck an indefinite integration there ‘ar?wp
steps to follow: .o,
1. Make sure a constant of integration BN
is there.

2. Differentiate, to see if you get back
the function you integrated.
EXAMPLE 9. ’

‘The equation L

.

I(sz - 5x")d_x = % x3 - x5+ ¢

is correct because

' (1) C is there, and i
(2) d (2 3 . 5+c) - . a 2 5 '0,*\0 :
ax ? X X 3 3 X X .

= 2x2 - 5x% .

EXERC ) SES —_ . .
True, or false? Differentiate to find out. -
»
31. Ixadx - 3‘:—-+ c 82. Ixzdx T3+
83. It*dt - % t*+ c 84. IV)T dy = y*+ c i \
% ‘ .

s._ 1 s ] -
8s. I(e --s-)ds-e‘-l-!-c 86. qu-dx <+ ¢
Find the missing integrands in Exercises 87-98.
87. I dx = %5 + ¢ 88. I dt = 16t2 + ¢ °

l * - = 2
dy-7+c SO.I = dt 'Gt,,'“'ot"so

, {Here, vo ‘and sy are constant/s.)

12




0\

C o, (vo is a constdnt. )?

dx = mx +b 94, I

I dy-ln lyl +¢ 92. dt=32t-kv°
(m and b are constants.)

I dT-m+T 96. I

o 1S a constant.)

J dx = -120x -70x+C 98, I

t

_NUMERICAL CONDITIONS \THAT -DETERMINE A CONSTANT
OF INTEGRATION

Ll 4 .

Every function T whose derivative is given by 695
formula ,
fr(x) = 10x
is a member of the family of functioags
IIOx dx = Sx? + C..
But to determine just which one.f is, we need more in-

formation. The information can-.be > supplied in various
ways, For instance, we might know “the _value of f at a

particular value of x, as in the follow1ng example.

EXAMPLE 10. Find f If £'(x) = l0x and £(1) = 3.
SOLUTION )

1. f(x) = 5x2 + ¢ for some C. BECAUSE
f'{x) = 10x.
2. 5(1)% +c=3
S+c=3
) ) C=-2 . »
Conditions like £(1) = 3 that select a particular solu~
tion from a family given by an indefinite integral are

-
BECAUSE
£(1) = 3.

*

called initial conditions.

T A s et provided by enic:

NE
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EXERCISES

Copy and complete the table below.

plete, shows ‘the following information:

i
H

. The derivative

3. An initial

O

ERIC

Aruitoxt provided by Eic:

¢

The first row, already com-

5. The function deter-

0

of a function condition mined by the deri-
vative together with
‘ . the Initial condi-
* tion.
Zsc] [f(5) =29
N
P 2. The indefinite 4, The value of € de-
integral of termined by the given
- this derivative initial condition
4
'l
INDEFINITE INITIAL  VALUE PART ICULAR
DERIVATIVE INTEGRAL  CONDITION OF C SOLUTION
PO W ) o ()
2x ' x? +¢ f(-5) =29 4 f(x) = x* + 4
99. In |x| +¢  fle) =~3
100. + ' F(1) = 2
tox
101, -x f(1) =0
102. x* +6 . £(1) = 10
) 103. 32 f(0) =0
10k, v, £(0) = 5
° . JA05. 32x + v (o) =0

106. Find thespotential energy U(x) of

an object as a function of

its position x, when the magnitude F(x) of the force acting

on the object is gliven by

F(x) = -kx.

4

¢

'~ Assume that U(0) = 0 and that U(x) = IF(x) dx.

14
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7. GRAPHICAL CONDITIONS THAT DETERMINE A CONSTANT
. ©  OF INTEGRATION

The graphs of the functions
f(x) = I(4 - 3x2)dx = 4x - x% + C

make a familf.}f ngn-
overlapping cufves in ‘ ;
the plane. There is
one curve for each
value of C.
Choosing a
+ function from the

by

v

family amounts to

choosing one of .
these curves. I |
One way to pick

out a curve is to

name a point on it. 2
We might say, for
example, "Take the
curve that passes o

[
}

through the point
(0,3)." This says .. ?
that, of all the
curves y = f(xJ; we
want the one that
satisfies the ini- .

Point

“(0,-3)

tial condition

. Graph of
f(0) = 3.

y-l'xz-x3-3

Figure 2. The graphs . “

Yae, .

of ya= bx ~ x
for ¢ = =3, 0, 2, 4.
 J

15°

o K
o

\‘1 ' ’ N . . - .

C




EXAMPLE 11, Find f if

.
©

oo frx) = 4- 3x2,
2. 'The graph of f passes through (1,5).

SOLUT 10N

°

The values of f are given by the—formula

f(x) = J(h\-' 3x%)dx = 4x < x? + C..

The graph of f has the equation

LY = hxex? e,

Becausé (1,5) lies on the graph,
) - N+ e =5
34Cm=
o€ =

Thus, f(x) = 4x - x? + 2,

.
4

?
I3

EXERC I SES

In Exercises lOf-llZ, find the value of C that makes the curve
)

y = bx - x* + C pass through the given point. *

107.  {0,0) ~ 108. (2,0) - 109.  (-2,0)
110.  (0,4) AL (2,7) o2, (3,1

Copy and complete the table on page 17.

-

JAruitoxt provided by ERic
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. rd
) A POINT ON .
[ FORMULA £1(x)dx R THE GRAPH FORMULA
. FOR f'(x) S OF f - FOR f(x)
. [ . 2 2
s 2x x2+ ¢ (5,20). . x4 -5
. 13. 5" (-2,1) ‘
! ”ll. 8X . . . ’ . (O;m >
. ‘ 4
TSN <hx + 3 {(=1,1)
e &
. N6, 9.8 ) T0L3) T
nps * -2 A 10,7)
j ng. . & . \ (1,4) ‘
— ' / N
. ; e Q
ng. - . (2,0) N
120 VX . (3,0)
In Exercises 121-124, graph the function whose derivative is given
L and that satisfies the given initial conditloh. -
ds’
121, 2= 32t + 10 ) . .
s(0) = -4, ’
v 'd_V_ = ‘ S
122. at 9.8 \
v(i) = 0 ’
3. 9 gt . -
123. at Se , .
y(o) =7
“ ds
l_le: it 9.8t ) ' P
v o s(0) =0 N ‘ -
- , 17
. . N
. ¢ ‘ .
.'
N L)

. ¢ \'
§ -"‘\‘c. » \ \‘ - N
'{\? i ti ) . ¢ — .

. T ‘, v © 230 ,
‘ \‘1 ‘ ' N . tv N . '
- \
. , N —— . -2 h ~ j
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8. ‘ﬂODELING: INITIAL‘&ONDITIONS FROM

PLAUSIBLE ASSUMPTIONS
[ N s

When initial conditions are’ not stated exp11C1t1y,
they can sometimes be inferred from otherylnformat1on or
eased on plausible assumptions. \

~

)

EXAMPLE 12. °To sample the upper atmosphere a rocket i's fired
straight up from the ground. The rocket engine accalerates

the rocket at 4m/sec?, and has encugh fuel to' burn for 2

minutes.

1) How high is the rocket | minute after launch?
2) How fast is it climbing then?

32 How high will the rocket Be‘when the engine stops?

4) How fast will it be climbing then?
ANALYSIS

! ~

The questions on the list are not as formidable as they might
seem at first glance because we can answer them a1|’by finding for-
mulas that descrlbe.qge rocket's he|ght and speed as fuhctions of
time. . R

[}

To begin, let s(t) denote the rocket's height in meters as a

‘
functlon f time measured in seconds. The choice of meters and seconds

is a natural one to make, because the rocket's acceleration Is given_ in
those terms. The use of the letter s is tradltlonal

Then s'(t) gives the rocket's velocity and s"kt) its accelera-
tion, so‘Phat while the engine is on

v s''(t) = 4 m/sec?.

‘lf'we measure time with t = D at the:tlme of Ignitlon, and, assume that
the englne‘glves full thrust froq the very start, then,

L)

s''(t) = 4 DSt< 12

s'(t) = IS"(t)Aﬁ

= Ihdt

=4t +C,03¢t<120,,

¢

’




.
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meters per second being understood. Since € = s'(0) "is the initial

in p|acé of C, as in the.

veloeity of the rocket, we usually write v,

next equgtion:

z

&
s'(t) =4t + v, 0<t <20.

If we assume that the rocket is fired from rest, then

vo=0 and ' s'(t) = 4t when 0 € t < 120.
. +

: To find s(t) for the two-minute interval the engine is on we

integrate again. This gives t

. v

.st) = Is'(t) dt

Iht dt

2t? + s, meters, 0 St < 120.

Notice that sas s(0), the so-called initial distance. To assign a
value to it we asstme’that distance jis measured up from the launching
pad with s(0) = 0. Accorqizgfy,

°s(t) = 2t2, < 120,

and the rocket's motion is completely described for the first two -
minutes of flight.

We will tske up what.happens to the rocket ¥ fter‘burn-

out when we get to the next exercises. For the moment, let
us look again at the decisions and assumptions we have made,’
and how they enabIed us to calculate the rocket's height as
a fufictiqn of time. T
, We first.dqcided on a notation s(t) for the rocket's
he%ght as a function of time. In terms of this notation we

.
.

wrote s'(t) for the velocity and s''(t) for the acceleration.
Then ‘we @ade assumptions about how the rocket worked and

how it was launched, and decisions about how time ‘and dis-
tance were to be measured. These transfated into numerical

\




0
° -
N -

data about s(t) and %ts derivatives,
tion of the motion_during th& "burn"

o

* ASSUMPT IONS GENERATED
DECIS10NS DATA ~

. »

ot > ;1:‘\\ 7

and lead to.a descrip-
period.

CONCLUS I ONS
ABOUT THE MOTION
DURING THE BURN PERIOD

Time is
measured in
seconds and
s(t) in meters.
The engine is
on for

" 0<t < 2. 0sts
The engine
gives full’ '
thrust while
on.

s"(t) = 4 .

120

! /

si(t) = 4t + v

<120

N The rocket
« is fired v
from rest.

= 4t +°0 = 4t
=217 + 5,

<180

Distance is
-measured up
from“the .
2 Yaunching * | .
A ‘ pad. )

t) = 2t2 4 0 = 2¢2
ste) = 2t £ 0 = 2
/

0 <'t<120

!

ExERC! ses'

A
questicns with which we began this section
follows‘ ,shows how the

:jst two qqestions can e rephrased in
’;' h , terms of s(t) and s’ (t); and then answered with simp)e calcula-

-

we.nwxgse the® equations for s(t) and s (t) to answer. the

The .table that

o ‘tions. Do the same for the remaining questions. S 3 >
. L3
JQ ?
. 'l»,:
‘-¢ * b‘
- -~ r
. . - ‘-
- . AT
Soe LI B - s— » .
»
4 N * - . °
.. 20
. » o " .
o ¥ s
. T ° . ¥ .
e ™ ' P o
L
L ]
r -
B -

.
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Al 4 .
REPHRASED IN
QUESTION . TERMS OF THE ANSWERED
. MODEL ®

- B

¥

»

4 ¢
How high Is the rocket s(60) = 2(60)%m

) | minute after launch? - s(60) = 7 - = 7200 m
. : = 7.2 km
How fast is it climb- - s ‘
¥ ' . ing one minute after . g % . 4
. launch? s' (60) = k(60) m/sec
a a) In m/sec s'(60) = 7 = 240 m/sec .
. *b) in km/h “_/\\ . = 864 km/h

125. How high will tpe
- rocket be when the
engine stops?
,a) in meters

. b) in kilometers

126. How fast will it
2 4 be climbing when

. the engine stops? .
7
127. When will the
L rocket be 20 k’ '/For what t is
above the launch s(t) = 20,000 m?
site? N

S 128. How 1dng does it M

take the rocket

to reach a velocity . S
. of 100m/sec? .
129. How long did 1t - '
take the rocket . .. ‘
to rise the ) , .
first 50 m? *
Can.a good ' .
runner run-.50 m
that fast? .y .
: P ; )
130. Hak long did 1t N . .
take the rocket . . ) ..
¢ to travel the . .
next 50 m?
LY A .
¢ s ; -
»
. - = 21 ¢
. 8 . \ ' . .
. , . .
' . "’
» ) - 239,
’
- L] R . 'y‘ ’r
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»
. /‘




As you gain-experience, you will not write as
kuch as we did when we discussed the rocket problem.
You might not need to

write more than T
. N s"(t) = 4 m/sec?
¢ @
} s'(t) = 4t + v, = 4t m/sec
o . s (t) = 2t + s, = 2t2 m .

Remember to write d?&n th,,unﬁ}&—'though if only foﬁs
later reference. f '{3 et NG

Bt was convenLentfto have had the 1n;:;§T‘véﬁoc1ty
v, and the initial d1stance s, both equal.to zero. —This
allowed us to describe the veloE1ty and distance traveled
by the rocket durlng the burn period simply, by the
equations s'(t) = 4@ and s(t) = 2t%. It will not ‘always
be possible to‘make§vo and s, both zero 'in descfibing a
motion, how%ver, noé will making them zero always be
desirable.

>

Exercis§ 131 below'is a case in point.
i

i .

There is more t? be Iearned about the flight of the rocket."

EXERCISES )
5" _
R The rocket coasts up@brds for a while after the engine shuts off.

\\For how long? And hi')w high?

- To answer thsse questions we need a mathematical model that
|s different from,the one we have been using. The reason for this

is that when the;englne shuts down the force acting on the rogcket
changes.

~

The apceleratiOn of the rocket is no longer 4 m/sec
upwards provnded by the engine, but, rathEr 9.8 m/sec? ’downwards,_"
provuded by zhe earth' :

-

+

4 7

3

‘e

Jf we continue ‘to measure distantt‘g; bqfore but reset our
clock to:start with t =0 agaun “the equatnon for the acceleratnogf
7 o
becomes/’ o
Py

5.
soﬁ%ag

.grav:tatlonal attraction.

£*

. .

e Y -

o
‘1‘»6

(SN
}"’:¢4
«

N

;:‘

.

s''(t) = ~9.8 m/sec?

-

S
. v
Y -

s'(t) = 9.8t + v, m/sec ’
s(t) = -b.9¢ + vyt + s, m

22

LYIN

ERI
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131. a) What numerical values should ¥y and s, have?

-

\b) Rewrite the equabions Just given for s'(t) and s(t) using

w e * the inftTal. values from Part a. '

©

Now complete the following table.

ay . e L REPHRASED IN® .
- QUESTION TERMS OF THE ANSWERED ’
, - / MODEL -
. -~ . z
132. How long does the M
. rocket coast upwards ° .

after burnout?

133. How high does the ‘
rocket go? . N
° ’
134.  When do the equations .
of motion predict the N -
rocket will crash?
— »

135. What is the rocket's
predicted speed

just before it ) . )
. crashes? ¢ Y
136. Would you expect a real
. rocket to behave as - . D
. predi€ted in Exercises \ ‘
134 and 1357 Explain. -~ > '
\d L 9. REPEATED INTEGRATION ~%
. . - >
) As you saw in the precéding section, when we -
integrate more than once to solve a problem we need a
N, > corresponding number of #nitidl conditions to determihe
Py ~ A
“the constants of integration. Here are two more exam- ‘;"
- ples. o,
s EXAMPLE13. Find f(x) if f'(x) = 12x - 14} €' (0) = 5 and £(0) = -3.
SOLUT ION The initial conditions can be used one at a time as
) " . % Y 23
. ’ b ) P
, S 3 s
" * . - L
S 2 241
- Q
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the integration proceeds, or ‘at the end of the inte-
© . K gration.

METHOD #1 \
1. Integrate f'"(x) = T2x - 14

kdk
to get f'(x) = 6x% - 14 +C,.
b a . 2. Use the condition f'(0) = 5 to find C,.
6(0) - 14(0) + ¢, = 5 .
Cl = 5
- 3. Integrate f'(x) = 6x% - 14x + § ‘
R to get fF(x) = 2x3 - 7x? + 5x + c,.
4. Use the condition f(0) = -3 to find C,. Ay
- ' 2(0)® - 7(0)% + 5(0) + ¢, = -3
C, = -3.
5. Write the completed formula for f(x).
' F(x) = 2x3 - 7x? + 6x - 3.
METHOD #2 . o
° Y. Integrate twice. f"(x) = 12x - 14
Fr(x) = 6x% - 14x + C ¢
‘ f(x) = 2x® - 7x%' + Cyx + C,.
2. Substitute x = 0
] In the last two €, = £'(0) = 5
4 equations to find C, = f(0) = -3.
\ €, and C,. .
3. Write the formyla R .
for f(x)) ¢ flx) 2 2x% - 7x* + 5x + 3
" EXAMPLE 14, Find f(x) if f'(x) = 4x - 2 and if the graph of f

passes through the point (1,0) with slope 3.

»

-
SOLUTION - ° 1. Integrate f'"(x) -
n = -
twice. £ (x) bx - 2
’ f1(x) = 2x? - 2x + C,
‘ fx) = % x3- x2 + Cyx + C,.
. l. - ¢ 24
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. Q ’
¢ 2. Determine €, from the T -
P fact that the slope of fFrQ1) =3
the graph is 3 when 2(1)2 - 2(1) + €, =3
x =1, c! = 3 .

3. Substitute this'value

of C, in the expres- f(x) = % x¥ - x? 4+ 3x + Cz.'

sion for f(x).

. 5, Determine C, from the f(1) =0
Fact 2at £(1) = 0. 20 - 2+ 30) +¢, =0

: 5 s...

- ' \‘1 ‘
“ERIC - ~

- , . . : ¢
ST . « \ »

3 °
(:2 = - ?
-
5. Urlte\f(x). f(x) = % x® - x? 4+ 3x - -g—
EXERGASES
Find the! functlorl determined by each set of conditions.
137, f'(x) = 2-6x; f'(0) = 4, F£(0) = 1. .
138, g"(t) =30t; g'(1) =0, g(1) = 10, )
139. h'(x) =e;  h'(0) = h(0) & 1.
- 140, K'(y) = /&;  k'(9) = 10, k(0) = 8. .
M'”(t) =6; p"(0) =-8, p'(0) =0, p(0) = 5. .
f [A %
. 2. f'(t) =1 - 6t, and the graph of f passes through the
point (2,0) with slope 0.
- .
2
. 143, r}'(x)‘s= %5-, and the graph of r passes through the point
|
(4,4) with slope 3. .
W44, g''(x) = ex, and the 'graph of g passes through the origin
with slope 2.
‘ 145,  h'(x) = - x—‘z-, x>0, and the graph of.h passes through
d { (1,2) with slope 0.
- /
Al
R
- -
{
A
* ~
X 25
- P |
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. 10. ANSWERS TO EXERCISES
- Sectién ]
. x=0,] .

2. b) :—x(Zxr- 3x2) = 6x% - 6x

is not a constant on any interval.

-

3. Some examples are: 5x“ and hxs;\sin X andy cos x.

X, ‘ .

4




¢\"A . . N
- ' S .
‘ y ‘ y »,
. . - S
. . - N . .
“ - Section 2 : B
I3 '. N *
) 6. hx+¢ 7. =25x + C
. - , .
' 8. 17 ° . 9. -3 L
. ) | : ) ‘
3 i 5 . .
16. X, c - ° 11 i. +C d .
3 L ,
. 12, ¢= . 13. In [| +¢ el ..
% L ’
’ 1, L e ST .
« X ° ] -]5. 1_2 +C . i
¢ ' K t~—
’ 16. =103+ ¢ 17. x18 -+ i
®, - , R
»
18.L ex . 19 llx3 .
‘ 20.7 x3 " 21, -103.5
22. kx + C 23. ax +C
- 2. m ' 7. b :
A
. & .
. ¢ 26, 32t + C PR *27. a o N
3 v .. ’ NCONAS B
.", 28 % + C . Ty 29'- 3'382 - Lo >
' < . oy
5 ve ¥
30, s>+ ¢C . 3te 5 4 ¢
¥ '7 : 1 ’ 3
O A 3.0g - o - .
. Mo ot + € . 35. 32t -
e ) L]
. 36. apt + C % 37 Jvot +C
) - -
/ . ’
. 38. v . . 39. % . ¢ "
’ R ° A o 27 J
\ / ) ) “ L;/ "
) b P e
- * - » .
ERIC “ <45, -
' N hd S .







*

by,

k6.

48,

50.

! 62.

64.

66.

Section 3
X+ C X
45, llx--z—'!'c
x =1 . h7.' -1
% —
-+ ¢ 49, ¢
. x2 » - —
mo-+tbx+C 1. y3~-g-y2+c
R L] . O
- ‘2 s 2 ° )
2s - 3s 53.'%—'—%ex+c "
z2 z . .
54. 3 1n|z| STttt v 550 3x2 - 90 47
Section 4 -
5 3 * . 1 1’
=12 v =3
3t +C 57. *x % or 3 N
} ' ‘
2 3 ) 0.3
Fxiec 59.~l39x2’+ C_
-85%,-; c . TR c
2 ) 3y
_! + N
. .
- . '
-37!-"'(: 6{ 'Ftc
=& 65. - |
‘x,., -_2 ) '(
T A3 . X Y .
15.. )
KPP
.Z B . ' Y o
Jh, .t ~
¥z C\ 69 ‘v+c ,
2, Y e
In|xf + ¢ VAR ) Inlxl'ﬂ(.: -
| .
1+ ' 738 -'~'%‘f' \
s “ » ' = .
x> 1 2 .
-3—- ;"'C 75 _Xz_‘+ lnlx’ +C
1 z .
2 -
e” + - b LT J+%+C_
“ 4 e
200 In|z] + ¢ “ o Yo
3 ) '] X
yZ +¢ ' o
. |
¢ LT .
4 '. )
‘
S by

O

ERIC

PR A v e Provided by R

q
~
' *
¢
L]
R L]
~e o
-
.
v
[N
-
.
.S
»
’
.
y
2
.,
-
.
<
.
.
.
r
\
@
\ B
| \
- ~
v -




- R ‘ ‘
'. ] k4 [
1 . “ d -
Section 5 , :
f\f 2 .
. ‘81, True 3 ' 82. False
83. True . 84. False )
8’5. False N 86. True :
87. 5 P ’
., 87. 5x , 8. 32t .
1 &
-89. - 7z 90, 32t + v, . S
1 n
1. = 2. 32
9 : 9 3 .
93. m 9. - T
. <0 Y .
T - &0 9. 23 &
..' _1_ A J
97. -240x ~ 70 8. 37
) INDEFINITE INITIAL _ VALUE  PARTICULAR
. DERIVATIVE _ INTEGRAL CONDITION  OF C SOLUT1 ON
£ (x) If'(x)dx fFlxg) ¢ £(x) o
- — A > . .‘ .
" 2% - XEHC + © (B =290 4 flx)=xZ+b R
- o T ~ T
\) 99., % In|x} + ¢ f(e)"=.-3 -4 f(x) = Infx|- 4
. 100, - L )+ F(1e=2 2 F(x) = In|x] + 4
. e . .
T i PN 2 - 2 .
A0L 7 =x -3 +C f(1) =0 I fx) = -3+ 4
- "‘152:‘ xL+6 - x_3_+ 6x'+c . f(1) = 10 LA f(x)=-x—3-+ 6x+u-
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125.

126.

127.

128.

129.
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. REPHRASED IN .
QUESTION TERMS OF THE ANSWERED
- MODEL .
>
How high is the s(60) = 2(60)%m
rocket 1 nfinute s(60) = 7 = 7200 m
after launch? = 7.2km .
How fast is it .
climbing one min- .
ute after Jaunch? ,5'(60) = 7 s'(60) = 4(60) m/sec
a) in meters . a) = 240 m/sec
b) in kilometers b) = 864 km/h
I
How high will the
rocket be when
the engine stops? s(120) = 7 "sY120) = 2-(120)%m -
a) in meters , a) = 28,800 m
b) in kilometers b) = 28.8 km
) 3
How fast will it be
climbing when the '
engine stops? (The
speed of sound in
air at sea level is s'(120) = 7 - s'(120) = 4(120) m/sec
about 335 m/sec. . a) = 480 m/sec .
Speeds of about 500 . b) = 1728 km/h

m/sec are typical
for oxygen molecules
at room temperature.

TN

When will the rocket
‘be 20°km above the’
launch site?

For what t is-

s(t) = 2Q<200 m?

.3t% = 20,000
t2 = 10,000 -
t 100 sec

e

How long does Tt
take the rocket to
reach a velocity
of 100 m/sec?

For what t is
s'(t) = 100 m/sec?

4t = 100
t = 25 sec

N

How long did it take .

the rocket to rise
the first 50 m? Can
a good runner run
50 m that fast?

¢

For what t is

s(t) = 50 m?

&

2t2 = 50 : i
t? = 25
t = 5 sec
The current world Fec-
ord for 100.m is 9.9
seconds.,
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-, ) REPHRASED IN
«. ‘.. QuESTION . TERMS OF THE ANSWERED -
. ’ ’ ‘ ) MODEL
& Y < . g 2
v N (S ‘5
SN 130, - How Iong did it *  Find The ¢ for which a) 2¢2 = 100 .
of ‘Qake the rockex s(t) =100 m. Then ~_ t2 =350
/1, ’ * to travel the subtract 5 sec. .t = 5/2 sec .
. next 50 m? b) 5/7 - §'= 5(vZ-1) .
- h = 5(0.414)
. . 2 - + = 2.07 sec .
- ~ . 1) -
A Se 131, a) v,.= 480 m/sec, and s, = 28,800 m (S/fxel:cises 126 and 125). s
o 8) s'(t) = -9.8t + 480 m/sec *
. \ s(t) =-4.9t* +7480t + 28,800 m .
v o 7 T . . - Il
|
Ja ‘ oot - REPHRASED IN
‘Y : . QUESTION TERMS OF THE. ANSWERED .
/ ' . MODEL
* - 3
. 2 : R
7\ Q\ [ ‘
132. How long does the For what t is = -9.8t + 480
focket_coast upwards s'(t) = 07 ~— t = 480/9.8 sec
after burnout? . = kg sec
! e ;- Toa e
" 133.° How high&oes the s(49) =7 .7 s(h9) = 40,555 m
Tacket go‘? .
. o YR
- .i \ 3 ' ¢ v - ‘
134. When do the equations ‘For what t is te=,140 sec ..
~ . of motion predict the s(t) = 07 fter burnout. . N
\ r0cket will crash? ) R B
9 . * he . [y
<" ¢ -
135. What IS the tocket's $'(140) = 7 -892 m/sec, or
ey predicted speed just » 892 m/sec downwards
0 beforedt crashes? - (=3,211.2 km/h)
°e ) i . ’ .
. = 8 — o
136. No. The predlctlons are sure to be underest|mates. They neglect
the alr resistance that will slow the rocket's fally assume the ° °
! rocket does not fragment,” and 90 forth. . R s - ‘ .
~ ’ . .. < “
- q
* . 34_ =
v . . .
El - L ]
¥ - 1 ‘
. . \
\ .
ERIC <52 .
. .
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Section 9

f(x) = -x® +

g(t) = 5¢3

h(g) = %

[y
. .

X2+ 4% + 1

<

- 15¢ + 20

y 5
kly) =gz vZ -8y +8

p(t)
f(t)

r(s)

h(x)

=t3'{lti+‘5

- 9(x) -

2

—_— -

t? + 10t - 14




